scholarly journals Modeling Cancer Remission Time Data by Means of the Max Erlang Binomial Distribution

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Bogdan Gheorghe Munteanu

In this paper, a statistical simulation algorithm for the power series distribution, called the Max Erlang Binomial distribution, is proposed, analyzed, and tested for bladder cancer remission time data. In order to present the simulation technique, the EM algorithm for statistical estimation aimed at estimating the model parameters is described.

2012 ◽  
Vol 532-533 ◽  
pp. 1445-1449
Author(s):  
Ting Ting Tong ◽  
Zhen Hua Wu

EM algorithm is a common method to solve mixed model parameters in statistical classification of remote sensing image. The EM algorithm based on fuzzification is presented in this paper to use a fuzzy set to represent each training sample. Via the weighted degree of membership, different samples will be of different effect during iteration to decrease the impact of noise on parameter learning and to increase the convergence rate of algorithm. The function and accuracy of classification of image data can be completed preferably.


Author(s):  
Carsten Wiuf ◽  
Michael P.H Stumpf

In this paper, we discuss statistical families with the property that if the distribution of a random variable X is in , then so is the distribution of Z ∼Bi( X ,  p ) for 0≤ p ≤1. (Here we take Z ∼Bi( X ,  p ) to mean that given X = x ,  Z is a draw from the binomial distribution Bi( x ,  p ).) It is said that the family is closed under binomial subsampling. We characterize such families in terms of probability generating functions and for families with finite moments of all orders we give a necessary and sufficient condition for the family to be closed under binomial subsampling. The results are illustrated with power series and other examples, and related to examples from mathematical biology. Finally, some issues concerning inference are discussed.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5549
Author(s):  
Ossi Kaltiokallio ◽  
Roland Hostettler ◽  
Hüseyin Yiğitler ◽  
Mikko Valkama

Received signal strength (RSS) changes of static wireless nodes can be used for device-free localization and tracking (DFLT). Most RSS-based DFLT systems require access to calibration data, either RSS measurements from a time period when the area was not occupied by people, or measurements while a person stands in known locations. Such calibration periods can be very expensive in terms of time and effort, making system deployment and maintenance challenging. This paper develops an Expectation-Maximization (EM) algorithm based on Gaussian smoothing for estimating the unknown RSS model parameters, liberating the system from supervised training and calibration periods. To fully use the EM algorithm’s potential, a novel localization-and-tracking system is presented to estimate a target’s arbitrary trajectory. To demonstrate the effectiveness of the proposed approach, it is shown that: (i) the system requires no calibration period; (ii) the EM algorithm improves the accuracy of existing DFLT methods; (iii) it is computationally very efficient; and (iv) the system outperforms a state-of-the-art adaptive DFLT system in terms of tracking accuracy.


1996 ◽  
Vol 79 (4) ◽  
pp. 981-988 ◽  
Author(s):  
Thomas Whitaker ◽  
Francis Giesbrecht ◽  
Jeremy Wu

Abstract The acceptability of 10 theoretical distributions to simulate observed distribution of sample aflatoxin test results was evaluated by using 2 parameter estimation methods and 3 goodness of fit (GOF) tests. All theoretical distributions were compared with 120 observed distributions of aflatoxin test results of farmers' stock peanuts. For a given parameter estimation method and GOF test, the negative binomial distribution had the highest percentage of statistically acceptable fits. The log normal and Poisson-gamma (gamma shape parameter = 0.5) distributions had slightly fewer but an almost equal percentage of acceptable fits. For the 3 most acceptable statistical models, the negative binomial had the greatest percentage of best or closest fits. Both the parameter estimation method and the GOF test had an influence on which theoretical distribution had the largest number of acceptable fits. All theoretical distributions, except the negative binomial distribution, had more acceptable fits when model parameters were determined by the maximum likelihood method. The negative binomial had slightly more acceptable fits when model parameters were estimated by the method of moments. The results also demonstrated the importance of using the same GOF test for comparing the acceptability of several theoretical distributions.


2016 ◽  
Vol 12 (1) ◽  
pp. 65-77
Author(s):  
Michael D. Regier ◽  
Erica E. M. Moodie

Abstract We propose an extension of the EM algorithm that exploits the common assumption of unique parameterization, corrects for biases due to missing data and measurement error, converges for the specified model when standard implementation of the EM algorithm has a low probability of convergence, and reduces a potentially complex algorithm into a sequence of smaller, simpler, self-contained EM algorithms. We use the theory surrounding the EM algorithm to derive the theoretical results of our proposal, showing that an optimal solution over the parameter space is obtained. A simulation study is used to explore the finite sample properties of the proposed extension when there is missing data and measurement error. We observe that partitioning the EM algorithm into simpler steps may provide better bias reduction in the estimation of model parameters. The ability to breakdown a complicated problem in to a series of simpler, more accessible problems will permit a broader implementation of the EM algorithm, permit the use of software packages that now implement and/or automate the EM algorithm, and make the EM algorithm more accessible to a wider and more general audience.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yupeng Li ◽  
Jianhua Zhang ◽  
Ruisi He ◽  
Lei Tian ◽  
Hewen Wei

In this paper, the Gaussian mixture model (GMM) is introduced to the channel multipath clustering. In the GMM field, the expectation-maximization (EM) algorithm is usually utilized to estimate the model parameters. However, the EM widely converges into local optimization. To address this issue, a hybrid differential evolution (DE) and EM (DE-EM) algorithms are proposed in this paper. To be specific, the DE is employed to initialize the GMM parameters. Then, the parameters are estimated with the EM algorithm. Thanks to the global searching ability of DE, the proposed hybrid DE-EM algorithm is more likely to obtain the global optimization. Simulations demonstrate that our proposed DE-EM clustering algorithm can significantly improve the clustering performance.


Sign in / Sign up

Export Citation Format

Share Document