scholarly journals Partial Dictionary Based Off-Grid DOA Estimation Using Combined Coprime and Nested Array

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jianfeng Li ◽  
Xiong Xu ◽  
Ping Li ◽  
Qiting Zhang

A partial dictionary based direction of arrival (DOA) estimation method which addresses the off-grid problem and exploits combined coprime and nested array (CCNA) is proposed. Compared to general coprime array, CCNA yields two sparse coprime subarrays in the coarray domain by adding a third subarray in the physical-array domain. To ensure the DOA estimation performance, the subarray with larger aperture is chosen, and the cyclic phase ambiguity caused by the sparse subarray allows partial dictionary covering arbitrary cycle to represent the whole atoms, and then, the off-grid sparse reconstruction method is developed to amend the grid mismatch. After the sparse recovery and off-grid compensation, ambiguous DOA estimations can be eliminated by substituting the estimations into the whole virtual array. Multiple simulations verify that the proposed algorithm outperforms the other state-of-the-art methods in terms of DOA estimation accuracy and angular resolution.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Feng Zhao ◽  
Xia Hao ◽  
Hongbin Chen

The estimation accuracy of direction-of-departure (DOD) and direction-of-arrival (DOA) is reduced because of Doppler shifts caused by the high-speed moving sources. In this paper, an improved DOA estimation method which combines the forward-backward spatial smoothing (FBSS) technique with the MUSIC algorithm is proposed for virtual MIMO array signals in high mobility scenarios. Theoretical analysis and experiment results demonstrate that the resolution capability can be significantly improved by using the proposed method compared to the MUSIC algorithm for the moving sources with limited array elements, especially the DOA which can still be accurately estimated when the sources are much closely spaced.


Author(s):  
Na WANG ◽  
Xuanzhi ZHAO ◽  
Zengli LIU ◽  
Jingjing ZHANG

Coprime array isAsparse array composed of two uniform linear arrays with different spacing. When the two subarrays are inAnon-coherent distributed configuration, the direction of arrival (DOA) method based on the covariance analysis of the complete coprime array is no longer effective. According to the essential attribute that the distance between the elements of two subarrays can eliminate the angle ambiguity, based on the mathematical derivation, Aspatial spectral product DOA estimation method for incoherent distributed coprime arrays is proposed. Firstly, the spatial spectrum of each subarray is calculated by using the snapshot data of each subarray, and then the DOA estimation is realized by multiplying the spatial spectrum of each subarray. The simulation results show that the estimation accuracy and angle resolution of the present method are better than those of the traditional ambiguity resolution methods, and the estimation performance is good in the mutual coupling and low SNR environment, with the good adaptability and stability. Moreover, by using the flexibility of distributed array, the matching error is effectively solved through the rotation angle.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yan-kui Zhang ◽  
Hai-yun Xu ◽  
Da-ming Wang ◽  
Bin Ba ◽  
Si-yao Li

The existing coprime array is mainly applicable to circular sources, while the virtual array degree of freedom (DOF) for noncircular sources is enhanced limitedly. In order to perfect the array DOF and the direction of arrival (DOA) estimation accuracy, a high degree of freedom sparse array design method for noncircular sources is put forward. Firstly, the method takes the advantages of the characteristic of the noncircular sources to expand the array manifold and then explores and solves the location distribution of the physical array sensors on the basis of the virtual array model with the help of the searching approach. The array configuration can obtain the longest continuous virtual array. The comparisons between the proposed array configuration and the common array configurations are advanced. The simulation experiments show that the sparse array presented in this paper can effectively increase the continuous virtual array aperture of noncircular sources, improve the array DOF and DOA estimation accuracy, and achieve the purpose of better estimation of multiple DOAs in underdetermined conditions.


Author(s):  
Fei Zhang ◽  
Zijing Zhang ◽  
Aisuo Jin ◽  
Chuantang Ji ◽  
Yi Wang

AbstractAiming at the problem that traditional direction of arrival (DOA) estimation methods cannot handle multiple sources with high accuracy while increasing the degrees of freedom (DOF), a new method for 2-D DOA estimation based on coprime array MIMO radar (SA-MIMO-CA) is proposed. First of all, in order to ensure the accuracy of multi-source estimation when the number of elements is finite, a new coprime array model based on MIMO (MIMO-CA) is proposed. This method is based on a new MIMO array-based co-prime array model (MIMO-CA), which improves the accuracy of multi-source estimation when the number of array elements is limited, and obtains a larger array aperture with a smaller number of array elements, and improves the estimation accuracy of 2-D DOA. Finally, the effectiveness and reliability of the proposed SM-MIMO-CA method in improving the DOF of array and DOA accuracy are verified by experiments.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 359 ◽  
Author(s):  
Juan Shi ◽  
Qunfei Zhang ◽  
Weijie Tan ◽  
Linlin Mao ◽  
Lihuan Huang ◽  
...  

In underwater acoustic signal processing, direction of arrival (DOA) estimation can provide important information for target tracking and localization. To address underdetermined wideband signal processing in underwater passive detection system, this paper proposes a novel underdetermined wideband DOA estimation method equipped with the nested array (NA) using focused atomic norm minimization (ANM), where the signal source number detection is accomplished by information theory criteria. In the proposed DOA estimation method, especially, after vectoring the covariance matrix of each frequency bin, each corresponding obtained vector is focused into the predefined frequency bin by focused matrix. Then, the collected averaged vector is considered as virtual array model, whose steering vector exhibits the Vandermonde structure in terms of the obtained virtual array geometries. Further, the new covariance matrix is recovered based on ANM by semi-definite programming (SDP), which utilizes the information of the Toeplitz structure. Finally, the Root-MUSIC algorithm is applied to estimate the DOAs. Simulation results show that the proposed method outperforms other underdetermined DOA estimation methods based on information theory in term of higher estimation accuracy.


2021 ◽  
Author(s):  
Fei Zhang ◽  
Zijing Zhang ◽  
Aisuo Jin ◽  
Chuantang Ji ◽  
Yi Wang

Abstract Aiming at the problem that traditional Direction of Arrival (DOA) estimation methods cannot handle multiple sources with high accuracy while increasing the degree of freedom, a new method of 2-D DOA estimation based on coprime array MIMO Radar (SA-MIMO-CA). Frist of all, in order to ensure the accuracy of multi-source estimation when the number of elements is finite, a new coprime array model based on MIMO (MIMO-CA) is proposed. The array model uses a special irregular array as the transmitting array and a uniform linear array as the receiving array. Besides, in order to reduce complexity and improve the accuracy of two-dimensional DOA estimation, a new two-dimensional DOA estimation method based on sparse array is proposed. This method uses the sparse array topology of virtual array elements to analyze a larger number of information sources, and combines the compressed sensing method to process the sparse array, and obtains a larger array aperture with a smaller number of array elements, and improves the resolution of the azimuth angle. This method improves the DOA estimation accuracy and reduces the complexity. Finally, experiments verify the effectiveness and reliability of the SA-MIMO-CA method in improving the degree of freedom of the array, reducing the complexity, and improving the accuracy of the DOA.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 424 ◽  
Author(s):  
Peng Chen ◽  
Zhenxin Cao ◽  
Zhimin Chen ◽  
Linxi Liu ◽  
Man Feng

The performance of a direction-finding system is significantly degraded by the imperfection of an array. In this paper, the direction-of-arrival (DOA) estimation problem is investigated in the uniform linear array (ULA) system with the unknown mutual coupling (MC) effect. The system model with MC effect is formulated. Then, by exploiting the signal sparsity in the spatial domain, a compressed-sensing (CS)-based system model is proposed with the MC coefficients, and the problem of DOA estimation is converted into that of a sparse reconstruction. To solve the reconstruction problem efficiently, a novel DOA estimation method, named sparse-based DOA estimation with unknown MC effect (SDMC), is proposed, where both the sparse signal and the MC coefficients are estimated iteratively. Simulation results show that the proposed method can achieve better performance of DOA estimation in the scenario with MC effect than the state-of-the-art methods, and improve the DOA estimation performance about 31.64 % by reducing the MC effect by about 4 dB.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hao Li ◽  
Weijia Cui ◽  
Bin Ba ◽  
Haiyun Xu ◽  
Yankui Zhang

The performance of direction-of-arrival (DOA) estimation for sparse arrays applied to the distributed source is worse than that applied to the point source model. In this paper, we introduce the coprime array with a large array aperture into the DOA estimation algorithm of the exponential-type coherent distributed source. In particular, we focus on the fourth-order cumulant (FOC) of the received signal which can provide more useful information when the signal is non-Gaussian than when it is Gaussian. The proposed algorithm extends the array aperture by combining the sparsity of array space domain with the fourth-order cumulant characteristics of signals, which improves the estimation accuracy and degree of freedom (DOF). Firstly, the signal-received model of the sparse array is established, and the fourth-order cumulant matrix of the received signal of the sparse array is calculated based on the characteristics of distributed sources, which extend the array aperture. Then, the virtual array is constructed by the sum aggregate of physical array elements, and the position set of its maximum continuous part array element is obtained. Finally, the center DOA estimation of the distributed source is realized by the subspace method. The accuracy and DOF of the proposed algorithm are higher than those of the distributed signal parameter estimator (DSPE) algorithm and least-squares estimation signal parameters via rotational invariance techniques (LS-ESPRIT) algorithm when the array elements are the same. Complexity analysis and numerical simulations are provided to demonstrate the superiority of the proposed method.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Y. Zhang ◽  
B. P. Wang ◽  
Y. Fang ◽  
Z. X. Song

The existing sparse imaging observation error estimation methods are to usually estimate the error of each observation position by substituting the error parameters into the iterative reconstruction process, which has a huge calculation cost. In this paper, by analysing the relationship between imaging results of single-observation sampling data and error parameters, a SAR observation error estimation method based on maximum relative projection matching is proposed. First, the method estimates the precise position parameters of the reference position by the sparse reconstruction method of joint error parameters. Second, a relative error estimation model is constructed based on the maximum correlation of base-space projection. Finally, the accurate error parameters are estimated by the Broyden–Fletcher–Goldfarb–Shanno method. Simulation and measured data of microwave anechoic chambers show that, compared to the existing methods, the proposed method has higher estimation accuracy, lower noise sensitivity, and higher computational efficiency.


2018 ◽  
Vol 232 ◽  
pp. 02052
Author(s):  
Tianhao Cheng ◽  
Buhong Wang ◽  
Qiaoge Liu ◽  
Jiwei Tian

In order to reduce the loss of Degree of Freedom (DOF) brought by the transmit subarray splitting of two-dimensional hybrid phased-MIMO radar, this paper presents a design method of transmitting and receiving array based on nested array structure. Firstly, a two-dimensional hybrid phased-MIMO radar transmitting array based on one-dimensional nested array is presented. On this basis, the receiving end is set as a nested array, and finally a virtual array and difference coarray are formed to expand the number of virtual array elements. The expansion increases the DOF of arrays while preserving the advantages of hybrid phased-MIMO radars. Simulation experiments show that compared with the traditional and coprime hybrid phased-MIMO radar, the proposed method can effectively improve the array DOF and Direction-of-Arrival (DOA) estimation accuracy.


Sign in / Sign up

Export Citation Format

Share Document