scholarly journals Origin and Circulation of Springs in the Nangqen and Qamdo Basins, Southwestern China, Based on Hydrochemistry and Environmental Isotopes

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-25
Author(s):  
Xiwei Qin ◽  
Haizhou Ma ◽  
Xiying Zhang ◽  
Xiasong Hu ◽  
Guorong Li ◽  
...  

The Nangqen and Qamdo (NQ-QD) basins in China have very rich geothermal and brine resources. The origin and spatiotemporal evolutionary processes of its hot and saline springs however remain unclear. Geochemical and isotopic (18O, 2H, 3H) studies have therefore been conducted on the water from the geothermal and saline springs in the NQ-QD Basin. All saline springs in the study area are of the Na-Cl geochemical type while geothermal waters show different geochemical types. The oxygen and hydrogen isotopic compositions of the springs in the NQ-QD Basin are primarily controlled by meteoric water or ice-snow melt water and are influenced by rock-water interactions. It is found that the saline springs in the study area are derived from the dissolution of halite and sulfate that occur in the tertiary Gongjue red bed, while the hot springs in the QD Basin are greatly influenced by the dissolution of carbonatites and sulfates from the Bolila (T3b) and Huakaizuo (J2h) formations. Results from silica geothermometry and a silicon-enthalpy hybrid model indicate that the apparent reservoir temperatures and reservoir temperatures for the hot springs in the QD Basin range from 57–130°C to75–214°C, respectively. Deuterium analysis indicates that most of the hot springs are recently recharged rain water. Furthermore, the saline springs have a weaker groundwater regeneration capacity than the hot springs. Tritium data shows that the ranges of calculated residence times for springs in this study are 25 to 55 years, and that there is a likelihood that hot springs in the QD Basin originated from two different hydrothermal systems. The geochemical characteristics of the NQ-QD springs are similar to those of the Lanping-Simao Basin, indicating similar solute sources. Thus, the use of water isotope analyses coupled with hydrogeochemistry proves to be an effective tool to determine the origin and spatiotemporal evolution of the NQ-QD spring waters.

2019 ◽  
Vol 98 ◽  
pp. 07010
Author(s):  
Qinghai Guo

The Yunnan-Sichuan-Tibet Geothermal Province (YST) in China is characterized by extremely high terrestrial heat flow and widely distributed hydrothermal systems, which are discharging geothermal waters with a wide range of arsenic concentrations. In this paper, the distribution of arsenic in the YST geothermal waters are presented, the general hydrochemistry of these waters is described, and the primary geochemical processes controlling the concentrations and speciation of geothermal arsenic in YST is considered.


2019 ◽  
Vol 98 ◽  
pp. 12008
Author(s):  
Elena Kalacheva

Many active and dormant volcanoes of the Kuril Islands host hydrothermal systems which discharge acid to ultra-acid SO4-Cl (Cl-SO4) and SO4 waters. On some island, hot near-neutral Na-Cl waters can be found discharging in coastal hot springs. Four main different isotopic shifts relative to the local meteoric water line can be observed in the corresponding δD vs. δ18O diagram. For the acid Cl-SO4 waters discharging within thermal fields on volcano slopes, there is a clear mixing trend between meteoric water and volcanic vapor. Steam-heated SO4 waters demonstrate trends indicating kinetic fractionation at temperatures close to the boiling-point. For the coastal springs, the trend is apparently a mixing line between meteoric and seawater. The δ18O-shift for deep thermal waters is related to isotopic exchange with host rock but there is also a clear latitude effect in the isotopic composition of the meteoric endmember.


2021 ◽  
Author(s):  
Cécile Massiot ◽  
Craig Miller ◽  
Matthew Stott ◽  
Pilar Villamor ◽  
Hiroshi Asanuma ◽  
...  

<p>Calderas are major volcanic features with large volcanic and seismic hazards. They also host diverse microbiota, provide heat, energy, mineral and economic benefits. Despite their scientific and socio-economic importance, we still do not completely understand calderas and the interactions between volcanism, tectonism, fluid circulation and the deep biosphere because in-situ and subsurface observations are sparse.</p><p>The Okataina Volcanic Centre (OVC) in Aotearoa New Zealand, is one of two active giant calderas of the Taupō Volcanic Zone within the rapidly extending continental intra-arc Taupō Rift. This superb natural laboratory has: 1) numerous past eruptions of varied size and style, 2) documented co-eruptive earthquakes, 3) vigorous hydrothermal manifestations, 4) diverse microbial communities in hot springs but unknown in the subsurface.</p><p>We propose to establish a scientific drilling programme at the OVC to address:</p><ul><li>What are the conditions leading to volcanic eruptions; and volcano-tectonic feedbacks in intra-rift calderas?</li> <li>What controls fluid circulations in active calderas/rift regions?</li> <li>Does subsurface microbial community composition vary with tectonic and/or volcanic activity?</li> </ul><p>High temperatures complicate drillhole design, restrict data collection and prevent exploration of the biosphere. By targeting the cooler parts of the caldera, this project will use conventional engineering to maximise sampling (drill cores and fluids), downhole logging and establish long-term observatories.</p><p>Two preliminary drill targets are suggested: (1) in the centre of the caldera; (2) through the caldera margin. Drill data will provide a comprehensive record of past activity, establishing eruption frequency-magnitude relationships and precursors. Combined with well-known fault rupture history, the relative timing of tectonic and magmatic activity will be untangled. Drill data will unravel the relationships between the groundwater and hydrothermal systems, magma, faults and stress, informing thermo-hydro-mechanical regional caldera models with findings applicable worldwide. Drill cores and a dedicated fluid sampler triggered by nearby earthquakes will reveal the composition, function and potential change of microbial activity in response to rock and fluid variations.</p><p>The programme is informed by indigenous Māori, regulatory authorities and emergency managers to ensure scientific, cultural, regulatory and resilience outcomes. The programme will underpin 1) community resilience to volcanic and seismic hazards; 2) sustainable management of groundwater and geothermal resources, and 3) understanding of subsurface microbial diversity, function and geobiological interactions. At these early stages of planning, we invite the scientific community to contribute to the concept of this project in the exceptional OVC settings and strengthen linkages with other ongoing research and scientific drilling programmes.</p>


Geothermics ◽  
2019 ◽  
Vol 82 ◽  
pp. 190-202 ◽  
Author(s):  
Mingliang Liu ◽  
Qinghai Guo ◽  
Geng Wu ◽  
Wei Guo ◽  
Weiyu She ◽  
...  

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Yuqi Zhang ◽  
Xun Zhou ◽  
Haisheng Liu ◽  
Mingxiao Yu ◽  
Kuo Hai ◽  
...  

In the Simao Basin in southwest China widely occur red beds of poor permeability. Nevertheless, more than 100 springs exist in the basin, some of which are hot springs with varying temperature. Hot springs contain abundant information on hydrogeochemical processes and groundwater circulation. In this study, hydrochemical and isotopic analyses and mixed models are used to examine the sources of recharge, heat, and solutes of the hot springs to better understand the subsurface processes and formation mechanisms of different hot springs in the basin. Three types of springs are found in the Simao Basin: springs of HCO3-Na type occur in the metamorphic rocks, springs of HCO3-Ca(Mg) and Cl-HCO3-Na-Ca types in the carbonate rocks, and springs of Cl(SO4)-SO4(Cl)-HCO3-Na(Ca) type in the red beds. Data of δ2H and δ18O indicate that the hot springs in the Simao Basin are meteoric in origin. Incongruent dissolution is the dominant process affecting the chemical compositions of the spring waters. The hydrochemical constituents of the hot springs in the metamorphic rocks, carbonate rocks, and red beds are influenced by the weathering of albite and the dissolution of carbonate, gypsum, anhydrite, and halite. The geothermal waters are mixed with shallow cold waters in their ascending processes, and the mixing ratios of cold water range from 58% to 94%. Due to the effect of mixing, the reservoir temperatures (51°C-127°C) calculated with the quartz geothermometer are regarded as the minimum reservoir temperatures. More reliable reservoir temperatures (91°C-132°C) are estimated with the fixed-Al method. The following mechanisms contribute to the formation of hot springs in the Simao Basin: the groundwater receives recharge from infiltration of precipitation and undergoes deep circulation, during which groundwater is heated by heat flow and incongruently dissolves the subsurface minerals and emerges in the form of hot springs along the permeable fracture or fault zones.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Laura Sánchez-García ◽  
Daniel Carrizo ◽  
Antonio Molina ◽  
Victoria Muñoz-Iglesias ◽  
María Ángeles Lezcano ◽  
...  

AbstractDetecting signs of potential extant/extinct life on Mars is challenging because the presence of organics on that planet is expected to be very low and most likely linked to radiation-protected refugia and/or preservative strategies (e.g., organo-mineral complexes). With scarcity of organics, accounting for biomineralization and potential relationships between biomarkers, mineralogy, and geochemistry is key in the search for extraterrestrial life. Here we explored microbial fingerprints and their associated mineralogy in Icelandic hydrothermal systems analog to Mars (i.e., high sulfur content, or amorphous silica), to identify potentially habitable locations on that planet. The mineralogical assemblage of four hydrothermal substrates (hot springs biofilms, mud pots, and steaming and inactive fumaroles) was analyzed concerning the distribution of biomarkers. Molecular and isotopic composition of lipids revealed quantitative and compositional differences apparently impacted by surface geothermal alteration and environmental factors. pH and water showed an influence (i.e., greatest biomass in circumneutral settings with highest supply and turnover of water), whereas temperature conditioned the mineralogy that supported specific microbial metabolisms related with sulfur. Raman spectra suggested the possible coexistence of abiotic and biomediated sources of minerals (i.e., sulfur or hematite). These findings may help to interpret future Raman or GC–MS signals in forthcoming Martian missions.


2015 ◽  
Vol 112 (25) ◽  
pp. 7668-7672 ◽  
Author(s):  
Jill M. McDermott ◽  
Jeffrey S. Seewald ◽  
Christopher R. German ◽  
Sean P. Sylva

Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.


Author(s):  
E. G. Kalacheva ◽  
Yu. A. Taran

Many active volcanoes of the Kuril Islands host hydrothermal systems. Their surface manifestations are represented by numerous thermal springs showing diverse chemical composition and physical-chemical parameters. Four main isotopic shifts relative to the local meteoric water line can be observed in the corresponding δD vs. δ18O diagrams. For the acid Cl-SO4 waters there is a clear mixing trend between meteoric water and volcanic vapor. The acid SO4waters demonstrate trends indicating kinetic fractionation at temperatures close to the boiling-point. Isotopic composition of the coastal springs tend to march the mixing line between meteoric and seawater. The δ18O-shift for deep thermal water is accounted to of isotopic exchange with host rock. The latitude effect revealed for meteoric waters also observed in the isotopic composition of the thermal waters.


Sign in / Sign up

Export Citation Format

Share Document