scholarly journals Growth Hormone (GH) Hypersecretion and GH Receptor Resistance in Streptozotocin Diabetic Mice in Response to a GH Secretagogue

2003 ◽  
Vol 4 (2) ◽  
pp. 73-81 ◽  
Author(s):  
Peter B. Johansen ◽  
Yael Segev ◽  
Daniel Landau ◽  
Moshe Phillip ◽  
Allan Flyvbjerg

The growth hormone (GH) and insulin-like growth factor I (IGF-I) axis were studied in streptozotocin (STZ) diabetic and nondiabetic female mice following intravenous (IV) injection of the GH secretagogue (GHS) ipamorelin or saline. On day 14, blood samples were obtained before and 10 minutes after the injection. Livers were removed and frozen for determination of the mRNA expressions of the GH receptor, GH-binding protein, and IGF-I, and hepatic IGF-I peptide. Serum samples were analyzed for GH and IGF-I. Following ipamorelin injection, the GH levels were found to be 150 ± 35μg/L and 62 ± 11μg/L in the diabetic compared to the nondiabetic mice (P< .05). Serum IGF-I levels were lower in diabetic than in nondiabetic animals, and rose after stimulation only in the nondiabetic animals. Furthermore, hepatic GH resistance and IGF-I mRNA levels and IGF-I peptide were increased in nondiabetic animals in response to GH stimulation, whereas the low levels per se of all these parameters in diabetic mice were unaffected. The study shows that STZ diabetic mice demonstrate a substantial part of the clinical features of type 1 diabetes in humans, including GH hypersecretion and GH resistance. Accordingly, it is proposed that STZ diabetic mice may be a better model of the perturbations of the GH/IGF-I axis in diabetes than STZ diabetic rats.

1994 ◽  
Vol 266 (5) ◽  
pp. E776-E785 ◽  
Author(s):  
P. A. Weller ◽  
M. J. Dauncey ◽  
P. C. Bates ◽  
J. M. Brameld ◽  
P. J. Buttery ◽  
...  

Regulation of insulin-like growth factor I (IGF-I) and growth hormone (GH) receptor mRNA in liver and muscle by energy status was assessed in 2-mo-old pigs by altering thermoregulatory demand and energy intake over a 5-wk period to produce a range of plasma IGF-I concentrations from 3.5 +/- 0.7 to 28.9 +/- 6.2 nmol/l. These values were related directly to growth rates (0.06 +/- 0.02 to 0.44 +/- 0.01 kg/day) and total hepatic IGF-I mRNA levels. Increased growth rates were accompanied by an increase in hepatic class 1 and class 2 IGF-I mRNA levels and an increase in the ratio of class 2 to class 1 IGF-I mRNA in liver, suggesting a distinct role for class 2 expression in the endocrine growth response. High levels of class 1 transcripts and a virtual absence of class 2 transcripts characterized all muscle tissues examined, and there was no correlation with plasma IGF-I levels. This suggests that growth promotion in response to increased energy status is regulated via endocrine hepatic IGF-I rather than via a paracrine response. The levels of GH receptor mRNA were positively correlated with overall growth rate (P < 0.005) in liver and negatively correlated (P < 0.05) in muscle, indicating distinct tissue-specific effects of energy status.


2000 ◽  
Vol 167 (2) ◽  
pp. 295-303 ◽  
Author(s):  
JW van Neck ◽  
NF Dits ◽  
V Cingel ◽  
IA Hoppenbrouwers ◽  
SL Drop ◽  
...  

The effects of growth hormone (GH) in regulating the expression of the hepatic and renal GH and insulin-like growth factor (IGF) system were studied by administering a novel GH receptor antagonist (GHRA) (B2036-PEG) at different doses (0, 1.25, 2.5, 5 and 10 mg/kg/day) to mice for 7 days. No differences were observed in the groups with respect to body weight, food consumption or blood glucose. However, a dose-dependent decrease was observed in circulating IGF-I levels and in hepatic and renal IGF-I levels at the highest doses. In contrast, in the 5 and 10 mg/kg/day GHRA groups, circulating and hepatic transcriptional IGF binding protein-3 (IGFBP-3) levels were not modified, likely resulting in a significantly decreased IGF-I/IGFBP-3 ratio. Hepatic GH receptor (GHR) and GH binding protein (GHBP) mRNA levels increased significantly in all GHRA dosage groups. Endogenous circulatory GH levels increased significantly in the 2.5 and 5 mg/kg/day GHRA groups. Remarkably, increased circulating IGFBP-4 and hepatic IGFBP-4 mRNA levels were observed in all GHRA administration groups. Renal GHR and GHBP mRNA levels were not modified by GHRA administration at the highest doses. Also, renal IGFBP-3 mRNA levels remained unchanged in most GHRA administration groups, whereas IGFBP-1, -4 and -5 mRNA levels were significantly increased in the 5 and 10 mg/kg/day GHRA administration groups. In conclusion, the effects of a specific GHR blockade on circulating, hepatic and renal GH/IGF axis reported here, may prove useful in the future clinical use of GHRAs.


2014 ◽  
Vol 307 (2) ◽  
pp. E186-E198 ◽  
Author(s):  
Yueshui Zhao ◽  
Xiaoqiu Xiao ◽  
Stuart J. Frank ◽  
Herbert Y. Lin ◽  
Yin Xia

During inflammation, the liver becomes resistant to growth hormone (GH) actions, leading to downregulation of the GH target gene IGF-I and activation of catabolism. Proinflammatory cytokines IL-6, TNF-α, and IL-1β are critically involved in the pathogenesis of hepatic GH resistance. However, the mechanisms used by endogenous IL-6, TNF-α, and IL-1β to inhibit the hepatic GH-IGF-I pathway during inflammation are not fully understood. Here, we show that TNF-α and IL-1β inhibited GH receptor (GHR) expression but had minor effects on the downstream suppressor of cytokine signaling (SOCS)3, while IL-6 induced SOCS3 expression but had no effect on GHR expression in Huh-7 cells. Consistent with the in vitro observations, neutralization of TNF-α and IL-1β in mouse models of inflammation did not significantly alter SOCS3 expression stimulated by inflammation but restored GHR and IGF-I expression suppressed by inflammation. Neutralization of IL-6 did not alter inflammation-suppressed GHR expression but drastically reduced the inflammation-stimulated SOCS3 expression and restored IGF-I expression. Interestingly, when the GH-IGF-I pathway was turned off by maximal inhibition of GHR expression, IL-6 and SOCS3 were no longer able to regulate IGF-I expression. Taken together, our results suggest that TNF-α/IL-1β and IL-6 use distinct mechanisms to induce hepatic GH resistance, with TNF-α and IL-1β acting primarily on GHR and IL-6 acting primarily on SOCS3. IL-6 action may be superseded by factors such as TNF-α and IL-1β that inhibit GHR expression.


1999 ◽  
Vol 276 (3) ◽  
pp. E565-E572 ◽  
Author(s):  
Dominique Defalque ◽  
Nathalie Brandt ◽  
Jean-Marie Ketelslegers ◽  
Jean-Paul Thissen

Sepsis induces a state of growth hormone (GH) resistance associated with a decrease of circulating insulin-like growth factor (IGF) I, a GH-dependent anabolic hormone mainly produced by the liver. To address the mechanisms that might trigger GH insensitivity in sepsis, we investigated the regulation of liver GH receptor (GHR) and its gene expression by endotoxin. Endotoxin injection in rats decreased serum IGF-I and liver GH-binding sites after 10 h. In contrast to liver GHR, circulating GH-binding protein (GHBP) levels were not significantly reduced after endotoxin injection. The parallel decrease in IGF-I and GHR and in their corresponding liver mRNAs suggests that decreased serum IGF-I and liver GHR were likely to result from decreased liver synthesis. Although GH administration in control animals significantly enhanced serum IGF-I, it did fail to prevent the decline in serum IGF-I and liver GH-binding sites in endotoxemic rats. In this study, we showed that endotoxin injection induces a state of GH insensitivity associated with decreased liver GHR. This decline in GHR, which cannot be prevented by exogenous GH, might contribute to the GH insensitivity observed in sepsis.


2001 ◽  
pp. 529-534 ◽  
Author(s):  
A Lopez-Calderon ◽  
I Ibanez de Caceres ◽  
L Soto ◽  
T Priego ◽  
AI Martin ◽  
...  

OBJECTIVE: Adjuvant-induced arthritis induces a catabolic response, and a decrease in circulating IGF-I. Hypermetabolism and GH insensitivity have been described in acute inflammation. The aim of this study was to analyze whether impaired IGF-I secretion in arthritic rats can be attributed to hepatic GH resistance. DESIGN AND METHODS: Male Wistar rats were injected with complete Freund's adjuvant, and 14 days afterwards arthritic and control rats were injected daily with recombinant human GH (rhGH) (3 IU/kg) or saline for 8 days. GH receptor (GHR) gene expression in the liver and the effect of rhGH on hepatic IGF-I synthesis in arthritic rats were examined. RESULTS: There was a significant decrease in hepatic concentrations of IGF-I (P < 0.01) as well as in the IGF-I gene expression in arthritic but not in pair-fed rats. In contrast, arthritis did not modify GHR mRNA levels in the liver. The 8 day administration of rhGH resulted in an increase in body weight gain in arthritic but not in control rats. There was an increase in hepatic IGF-I synthesis and in GHR mRNA levels after rhGH treatment, both in control and in arthritic rats. Two endotoxin lipopolysaccharide (LPS) (1 mg/kg) injections decreased hepatic concentrations of IGF-I and IGF-I mRNA (P < 0.01). Contrary to the results obtained in arthritic rats, mRNA expression of GHR in the liver was lower in LPS- than in saline-treated rats (P < 0.01). CONCLUSION: These data suggest that the decrease in IGF-I synthesis induced by chronic arthritis is not secondary to GH resistance.


1996 ◽  
Vol 135 (6) ◽  
pp. 729-737 ◽  
Author(s):  
Matthias Wolf ◽  
Sebastian Böhm ◽  
Marcus Brand ◽  
Georg Kreymann

Wolf M, Böhm S, Brand M, Kreymann G. Proinflammatory cytokines interleukin 1β and tumor necrosis factor α inhibit growth hormone stimulation of insulin-like growth factor I synthesis and growth hormone receptor mRNA levels in cultured rat liver cells. Eur J Endocrinol 1996;135:729–37. ISSN 0804–4643 Low levels of insulin-like growth factor I (IGF-I) in critical illness are observed despite increased or normal levels of growth hormone (GH). The mechanisms for this apparent GH resistance have not been elucidated. As many of the acute inflammatory responses in critical illness are mediated by the proinflammatory cytokines interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α), the present studies evaluated IL-1β and TNF-α effects on steady-state and GH-stimulated IGF-I synthesis and GH receptor mRNA levels. In rat hepatocytes in primary culture, IGF-I released into culture medium was determined by radioimmunoassay, and quantitative competitive polymerase chain reaction was used to measure IGF-I mRNA and GH receptor mRNA concentrations. Growth hormone increased GH receptor mRNA, IGF-I mRNA and IGF-I protein secreted into the culture medium. In cells not stimulated with GH, modest inhibitory effects of IL-1β on GH receptor mRNA, IGF-I mRNA and IGF-I protein levels were seen. However, the stimulatory effects of GH were inhibited in a dose-dependent manner both by IL-1β and TNF-α, and at higher cytokine concentrations no stimulatory effects of GH were observed. Both IL-1β and TNF-α in submaximal dose had additive inhibitory effects on IGF-I protein concentrations but these effects did not result in irreversible damage to cells, as indicated by restoration of IGF-I and GH receptor mRNA levels to normal after withdrawal of cytokines. In conclusion, we demonstrated that in rat hepatocytes in primary culture IL-1β and TNF-α inhibited GH-stimulated IGF-I synthesis. Diminished GH receptor mRNA concentrations in response to IL-1β and TNF-α indicate that low IGF-I levels during severe illness, despite high circulating GH levels, may at least partially be a consequence of suppression of hepatic GH receptor synthesis by IL-1β and TNF-α. Matthias Wolf, Medizinische Kern- und Poliklinik, Universitäts-Krankenhaus Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany


2005 ◽  
Vol 185 (3) ◽  
pp. 467-476 ◽  
Author(s):  
Teresa Priego ◽  
Miriam Granado ◽  
Ana Isabel Martín ◽  
Asunción López-Calderón ◽  
María Angeles Villanúa

The aim of this study was to investigate whether glucocorticoid administration had a beneficial effect on serum concentrations of insulin-like growth factor I (IGF-I) and on IGF-binding protein 3 (IGFBP-3) in rats injected with lipopolysaccharide (LPS). Adult male rats were injected with LPS or saline and pretreated with dexamethasone or saline. Dexamethasone administration decreased growth hormone (GH) receptor and IGF-I mRNA levels in the liver of control rats. LPS decreased GH receptor and IGF-I gene expression in the liver of saline-treated rats but not in the liver of dexamethasone-pretreated rats. In the kidney, GH receptor mRNA levels were not modified by dexamethasone or LPS treatment. However, LPS decreased renal IGF-I gene expression and dexamethasone pretreatment prevented this decrease. Serum concentrations of IGF-I were decreased by LPS, and dexamethasone pretreatment attenuated this effect. The gene expression of IGFBP-3 in the liver and kidney and its circulating levels were decreased by LPS. In control rats dexamethasone increased circulating IGFBP-3 and its gene expression in the liver, and decreased the proteolysis of this protein. Dexamethasone pretreatment attenuated the LPS-induced decrease in IGFBP-3 gene expression in the liver and prevented the LPS-induced decrease in IGFBP-3 gene expression in the kidney. Moreover, dexamethasone pretreatment attenuated the LPS-induced decrease in serum concentrations of IGFBP-3 and decreased the LPS-induced IGFBP-3 proteolysis in serum. In conclusion, dexamethasone pretreatment partially attenuates the inhibitory effect of LPS on serum IGF-I by blocking the decrease of its gene expression in the kidney as well as by attenuating the decrease in serum concentrations of IGFBP-3.


1996 ◽  
Vol 271 (2) ◽  
pp. E223-E231 ◽  
Author(s):  
L. Goya ◽  
F. Rivero ◽  
M. A. Martin ◽  
R. Arahuetes ◽  
E. R. Hernandez ◽  
...  

The effect of refeeding and insulin treatment of undernourished and diabetic neonatal rats, respectively, on the regulation of insulin-like growth factor (IGF) and insulin-like growth factor binding protein (IGFBP) was investigated. The changes in body weight, insulinemia, glycemia, serum IGF-I, and growth hormone (GH) as well as the increase of the 30-kDa IGFBP in undernourished and diabetic neonatal rats previously shown elsewhere were reversed by refeeding and insulin treatment, respectively. Also, changes in liver mRNA expression of IGF-I and-II and IGFBP-1 and -2 were restored in refed undernourished and IGF-I and IGFBP-1 levels recovered in insulin-treated diabetic rats. However, serum GH was still below normal after rehabilitation in both situations. Thus the present results support the idea of a GH-independent IGF/ IGFBP regulation mediated by a balance of insulin and nutrients as has already been suggested in previous neonatal studies.


1992 ◽  
Vol 126 (2) ◽  
pp. 155-161 ◽  
Author(s):  
Geoffrey R Ambler ◽  
Bernhard H Breier ◽  
Andrzej Surus ◽  
Hugh T Blair ◽  
Stuart N McCutcheon ◽  
...  

We evaluated the interrelationship between, and regulation of, the hepatic growth hormone receptor and serum GH binding protein (GH BP) in pigs treated with recombinant porcine growth hormone (rpGH). Infant and pubertal male pigs (N = 5 per group) received either rpGH 0.15 mg/kg daily or diluent intramuscularly for 12 days. Somatic growth, serum IGF-I and GH BP and [125I]bovine GH (bGH) binding to MgCl2-treated hepatic membrane homogenates were examined. Marked age-related increases were seen in serum GH BP (p<0.001) and [125I]bGH binding to hepatic membranes (p<0.001). GH BP was increased in rpGH treated animals (p = 0.03), from 13.8±1.2 (mean±1 x sem) (controls) to 17.8±2.0% in infants, and from 35.2±2.6 (controls) to 41.8±3.4% in pubertal animals. [125I]bGH binding to hepatic membranes was also increased by rpGH treatment (p<0.05), from 7.0±1.6 (controls) to 15.4±3.6% in infants and from 53.7±7.1 (controls) to 65.1±11.8% in pubertal animals. No significant interaction between age and treatment was seen. Overall, serum GH BP correlated significantly with [125I]bGH membrane capacity (r=0.82, p<0.001), with a correlation of r= 0.83 in the infant animals but no significant correlation in the pubertal animals considered alone (r=0.13). Serum IGF-I correlated significantly with serum GH BP (r=0.93, p<0.001) and [125]bGH membrane binding capacity (r = 0.91, p< 0.001). These observations suggest that serum GH BP levels reflect major changes of hepatic GH receptor status. In addition, the present study demonstrates that the hepatic GH receptor can be induced by GH in the infant pig, despite a developmentally low GH receptor population at this age, suggesting potential efficacy of GH at earlier ages than generally considered.


Sign in / Sign up

Export Citation Format

Share Document