Experimental Diabesity Research
Latest Publications


TOTAL DOCUMENTS

60
(FIVE YEARS 0)

H-INDEX

21
(FIVE YEARS 0)

Published By Hindawi Limited

1543-8619, 1543-8600

2004 ◽  
Vol 5 (3) ◽  
pp. 219-226 ◽  
Author(s):  
Satoko Arai ◽  
Christina Minjares ◽  
Seiho Nagafuchi ◽  
Toru Miyazaki

The manipulation of a specific gene in NOD mice, the best animal model for insulin-dependent diabetes mellitus (IDDM), must allow for the precise characterization of the functional involvement of its encoded molecule in the pathogenesis of the disease. Although this has been attempted by the cross-breeding of NOD mice with many gene knockout mice originally created on the 129 or C57BL/6 strain background, the interpretation of the resulting phenotype(s) has often been confusing due to the possibility of a known or unknown disease susceptibility locus (e.g.,Iddlocus) cosegregating with the targeted gene from the diabetes-resistant strain. Therefore, it is important to generate mutant mice on a pure NOD background by using NOD-derived embryonic stem (ES) cells. By using the NOD ES cell line established by Nagafuchi and colleagues in 1999 (FEBSLett., 455, 101–104), the authors reexamined various conditions in the context of cell culture, DNA transfection, and blastocyst injection, and achieved a markedly improved transmission efficiency of these NOD ES cells into the mouse germ line. These modifications will enable gene targeting on a “pure” NOD background with high efficiency, and contribute to clarifying the physiological roles of a variety of genes in the disease course of IDDM.


2004 ◽  
Vol 5 (2) ◽  
pp. 163-169 ◽  
Author(s):  
A. E. Buchs ◽  
A. Kornberg ◽  
M. Zahavi ◽  
D. Aharoni ◽  
C. Zarfati ◽  
...  

The aim of the study was to determine the correlation between the expression of tissue factor (TF) and the receptor for advanced glycation end products (RAGEs) and vascular complications in patients with longstanding uncontrolled type 2 diabetes (T2D). TF and RAGE mRNAs as well as TF antigen and activity were investigated in 21 T2D patients with and without vascular complications. mRNA expression was assessed by reverse transcriptase–polymerase chain reaction (RT-PCR) in nonstimulated and advanced glycation end product (AGE) albumin–stimulated peripheral blood mononuclear cells (PBMCs). TF antigen expression was determined by enzyme-linked immunosorbent assay (ELISA) and TF activity by a modified prothrombin time assay. Basal RAGE mRNA expression was 0.2 ± 0.06 in patients with complications and 0.05 ± 0.06 patients without complications (P= .004). Stimulation did not cause any further increase in either group. TF mRNA was 0.58 ± 0.29 in patients with complications and 0.21 ± 0.18 in patients without complications (P= .003). Stimulation resulted in a nonsignificant increase in both groups. Basal TF activity (U/106PBMCs) was 18.4 ± 13.2 in patients with complications and 6.96 ± 5.2 in patients without complications (P= .003). It increased 3-fold in both groups after stimulation (P= .001). TF antigen (pg/106PBMCs) was 33.7 ± 28.6 in patients with complications, 10.4 ± 7.8 in patients without complications (P= .02). Stimulation tripled TF antigen in both groups of patients (P= .001). The RAGE/TF axis is up-regulated inT2Dpatients with vascular complications as compared to patients without complications. This suggests a role for this axis in the pathogenesis of vascular complications in T2D.


2004 ◽  
Vol 5 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Anders A. F. Sima ◽  
Weixian Zhang ◽  
George Grunberger

The most common microvascular diabetic complication, diabetic peripheral polyneuropathy (DPN), affects type 1 diabetic patients more often and more severely. In recent decades, it has become increasingly clear that perpetuating pathogenetic mechanisms, molecular, functional, and structural changes and ultimately the clinical expression of DPN differ between the two major types of diabetes. Impaired insulin/C-peptide action has emerged as a crucial factor to account for the disproportionate burden affecting type 1 patients. C-peptide was long believed to be biologically inactive. However, it has now been shown to have a number of insulin-like glucoseindependent effects. Preclinical studies have demonstrated dose-dependent effects onNa+,K+-ATPase activity, endothelial nitric oxide synthase (eNOS), and endoneurial blood flow. Furthermore, it has regulatory effects on neurotrophic factors and molecules pivotal to the integrity of the nodal and paranodal apparatus and modulatory effects on apoptotic phenomena affecting the diabetic nervous system. In animal studies, C-peptide improves nerve conduction abnormalities, prevents nodal degenerative changes, characteristic of type 1 DPN, promotes nerve fiber regeneration, and prevents apoptosis of central and peripheral nerve cell constituents. Limited clinical trials have confirmed the beneficial effects of C-peptide on autonomic and somatic nerve function in patients with type 1 DPN. Therefore, evidence accumulates that replacement of C-peptide in type 1 diabetes prevents and even improves DPN. Large-scale food and drug administration (FDA)-approved clinical trials are necessary to make this natural substance available to the globally increasing type 1 diabetic population.


2004 ◽  
Vol 5 (4) ◽  
pp. 245-251 ◽  
Author(s):  
M. E. Dávila-Esqueda ◽  
F. Martínez-Morales

Oxidative damage has been suggested to be a contributing factor in the development to diabetic nephropathy (DN). Recently, there has been evidence that pentoxifylline (PTX) has free radical-scavenging properties; thus, its antiinflammatory and renoprotective effects may be related to a reduction in reactive oxygen species production. It is likely that the pharmacological effects of PTX include an antioxidant mechanism as shown in in vitro assays. The aim of this study was to evaluate whether the reported renoprotective effects of PTX could be the result of its antioxidant actions in streptozotocin (STZ)-induced DN in rats. The administration of PTX over a period of 8 weeks, in addition to displaying renoprotective effects, caused a significant reduction in lipoperoxide levels (LPOS) in the diabetic kidney (P< 0.05), compared to untreated rats. These levels were comparable to those in the healthy kidney of experimental animals (P> 0.05). All untreated STZ rats exhibited an increase in LPOS as opposed to healthy controls (H) (P< 0.001). The total antioxidant activity (TAA) in plasma was increased significantly already after 2 days of STZ (P< 0.05). When we examined the progression of TAA in STZ rats, there was a significant decrease over 8 weeks (P< 0.05). PTX treatment caused an increase in TAA when compared to untreated STZ rats (P< 0.05). Renal hypertrophy was less evident in PTX-treated STZ than in untreated STZ rats, evaluated by kidney weight/body weight ratio. These results indicate that PTX decreases the oxidative damage induced by these experimental procedures and may increase antioxidant defense mechanisms in STZ-induced diabetes in rats.


2004 ◽  
Vol 5 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Donald F. Steiner

The C-peptide links the insulin A and B chains in proinsulin, providing thereby a means to promote their efficient folding and assembly in the endoplasmic reticulum during insulin biosynthesis. It then facilitates the intracellular transport, sorting, and proteolytic processing of proinsulin into biologically active insulin in the maturing secretory granules of theβcells. These manifold functions impose significant constraints on the C-peptide structure that are conserved in evolution. After cleavage of proinsulin, the intact C-peptide is stored with insulin in the soluble phase of the secretory granules and is subsequently released in equimolar amounts with insulin, providing a useful independent indicator of insulin secretion. This brief review highlights many aspects of its roles in biosynthesis, as a prelude to consideration of its possible additional role(s) as a physiologically active peptide after its release with insulin into the circulation in vivo.


2004 ◽  
Vol 5 (1) ◽  
pp. 51-64 ◽  
Author(s):  
T. Forst ◽  
T. Kunt

Beside functional and structural changes in vascular biology, alterations in the rheologic properties of blood cells mainly determines to an impaired microvascular blood flow in patients suffering from diabetes mellitus. Recent investigations provide increasing evidence that impaired C-peptide secretion in type 1 diabetic patients might contribute to the development of microvascular complications. C-peptide has been shown to stimulate endothelial NO secretion by activation of theCa2+calmodolin regulated enzyme eNOS. NO himself has the potency to increase cGMP levels in smooth muscle cells and to activateNa+K+ATPase activity and therefore evolves numerous effects in microvascular regulation. In type 1 diabetic patients, supplementation of C-peptide was shown to improve endothelium dependent vasodilatation in an NO-dependent pathway in different vascular compartments. In addition, it could be shown that C-peptide administration in type 1 diabetic patients, results in a redistribution of skin blood flow by increasing nutritive capillary blood flow in favour to subpapillary blood flow. ImpairedNa+K+ATPase in another feature of diabetes mellitus in many cell types and is believed to be a pivotal regulator of various cell functions. C-peptide supplementation has been shown to restoreNa+K+ATPase activity in different cell types during in vitro and in vivo investigations. In type 1 diabetic patients, C-peptide supplementation was shown to increase erythrocyteNa+K+ATPase activity by about 100%. There was found a linear relationship between plasma C-peptide levels and erythrocyteNa+K+ATPase activity. In small capillaries, microvascular blood flow is increasingly determined by the rheologic properties of erythrocytes. Using laser-diffractoscopie a huge improvement in erythrocyte deformability could be observed after C-peptide administration in erythrocytes of type 1 diabetic patients. Inhibition of theNa+K+ATPase by Obain completely abolished the effect of C-peptide on erythrocyte deformability. In conclusion, C-peptide improves microvascular function and blood flow in type 1 diabetic patients by interfering with vascular and rheological components of microvascular blood flow.


2004 ◽  
Vol 5 (3) ◽  
pp. 211-217 ◽  
Author(s):  
P. Nivoit ◽  
A. M. Chevrier ◽  
M. Lagarde ◽  
C. Renaudin ◽  
N. Wiernsperger

In vivo observations of the mouse microcirculation can hardly be performed due to technical difficulties, limiting the knowledge that could be obtained from gene manipulated mice models. The aim of the present study was to check the applicability of a novel optical system, the orthogonal polarization spectral technology, to study the mouse microcirculation. In anaesthetized mice, the spinotrapezius muscle microcirculation was observed in situ. The diameter of precapillary arterioles was measured before and after a pharmacological or hormonal stimulation. High-contrast images of the muscle microcirculation were obtained and significant vasodilatation of arterioles was observed after topical applications of acetylcholine, sodium nitroprusside, and insulin. As compared to conventional techniques, orthogonal polarization spectral imaging makes it possible to assess and study microvascular beds in mice, which were inaccessible until now, allowing the use of gene manipulated mice to investigate, for example, the mechanisms involved in the development of diabetic microangiopathy.


2004 ◽  
Vol 5 (3) ◽  
pp. 227-235 ◽  
Author(s):  
S. Aouichat Bouguerra ◽  
Y. Benazzoug ◽  
F. Bekkhoucha ◽  
M. C. Bourdillon

To simulate diabetic conditions, the effects of high glucose concentration on collagen synthesis and cholesterol level in cultured aortic smooth muscle cells ofPsammomyswere investigated. For collagen biosynthesis, smooth muscle cells (SMCs) were incubated in synthetic proliferative phase and in postconfluent phase withH3-proline. Cellular cholesterol was determined by enzymatic method. Under high glucose concentration, the results showed morphological modifications characterized by morphometric cellular, nuclear, and nucleolar changes. In biochemical studies, the authors observed an increase of free and esterified cellular cholesterol as well as of total proteins, collagen biosynthesis, andα1 (I+III) andα2 (I) chains of collagen contained in the SMCs and in the extracellular matrix. These results showed the sensitivity ofPsammomysaortic SMCs to high glucose concentration and would constitute an interesting cellular model to study atherosclerosis pathogeny in experimental diabetes.


2004 ◽  
Vol 5 (2) ◽  
pp. 143-153 ◽  
Author(s):  
G. Kesava Reddy

Nonenzymatic glycation of connective tissue matrix proteins is a major contributor to the pathology of diabetes and aging. Previously the author and colleagues have shown that nonenzymatic glycation significantly enhances the matrix stability in the Achilles tendon (Reddy et al., 2002,Arch. Biochem. Biophys., 399, 174–180). The present study was designed to gain further insight into glycation-induced collagen cross-linking and its relationship to matrix stiffness in the rabbit Achilles tendon. The glycation process was initiated by incubating the Achilles tendons (n = 6) in phosphate-buffered saline containing ribose, whereas control tendons (n = 6) were incubated in phosphate-buffered saline without ribose. Eight weeks following glycation, the biomechanical attributes as well as the degree of collagen cross-linking were determined to examine the potential associations between matrix stiffness and molecular properties of collagen. Compared to nonglycated tendons, the glycated tendons showed increased maximum load, stress, strain, Young's modulus of elasticity, and toughness indicating that glycation increases the matrix stiffness in the tendons. Glycation of tendons resulted in a considerable decrease in soluble collagen content and a significant increase in insoluble collagen and pentosidine. Analysis of potential associations between the matrix stiffness and degree of collagen cross-linking showed that both insoluble collagen and pentosidine exhibited a significant positive correlation with the maximum load, stress, and strain, Young's modulus of elasticity, and toughness (rvalues ranging from .61 to .94) in the Achilles tendons. However, the soluble collagen content present in neutral salt buffer, acetate buffer, and acetate buffer containing pepsin showed an inverse relation with the various biomechanical attributes tested (rvalues ranging from .22 to .84) in the Achilles tendons. The results of the study demonstrate that glycation-induced collagen cross-linking is directly associated with the increased matrix stiffness and other mechanical attributes of the tendon.


2004 ◽  
Vol 5 (1) ◽  
pp. 37-50 ◽  
Author(s):  
P. Vague ◽  
T. C. Coste ◽  
M. F. Jannot ◽  
D. Raccah ◽  
M. Tsimaratos

Na+,K+-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications.Na+,K+-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients,Na+,K+-ATPase activity was strongly related to blood C-peptide levels in non–insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by theATP1A1gene.Apolymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for lowNa+,K+-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normalNa+,K+-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhancesNa+,K+-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase ofNa+,K+-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent mannerNa+,K+-ATPase activity. This impairment inNa+,K+-ATPase activity, mainly secondary to the lack of C-peptide, plays probably a role in the development of diabetic complications. Arguments have been developed showing that the diabetesinduced decrease inNa+,K+-ATPase activity compromises microvascular blood flow by two mechanisms: by affecting microvascular regulation and by decreasing red blood cell deformability, which leads to an increase in blood viscosity. C-peptide infusion restores red blood cell deformability and microvascular blood flow concomitantly withNa+,K+-ATPase activity. The defect in ATPase is strongly related to diabetic neuropathy. Patients with neuropathy have lower ATPase activity than those without. The diabetes-induced impairment inNa+,K+-ATPase activity is identical in red blood cells and neural tissue. Red blood cell ATPase activity is related to nerve conduction velocity in the peroneal and the tibial nerve of diabetic patients. C-peptide infusion to diabetic rats increases endoneural ATPase activity in rat. Because the defect inNa+,K+-ATPase activity is also probably involved in the development of diabetic nephropathy and cardiomyopathy, physiological C-peptide infusion could be beneficial for the prevention of diabetic complications.


Sign in / Sign up

Export Citation Format

Share Document