scholarly journals Propagation of Solitary Waves over a Submerged Slotted Barrier

2020 ◽  
Vol 8 (6) ◽  
pp. 419 ◽  
Author(s):  
Yun-Ta Wu ◽  
Shih-Chun Hsiao

In this article, the interaction of solitary waves and a submerged slotted barrier is investigated in which the slotted barrier consists of three impermeable elements and its porosity can be determined by the distance between the two neighboring elements. A new experiment is conducted to measure free surface elevation, velocity, and turbulent kinetic energy. Numerical simulation is performed using a two-dimensional model based on the Reynolds-Averaged Navier-Stokes equations and the non-linear k-ɛ turbulence model. A detailed flow pattern is illustrated by a flow visualization technique. A laboratory observation indicates that flow separations occur at each element of the slotted barrier and the vortex shedding process is then triggered due to the complicated interaction of those induced vortices that further create a complex flow pattern. During the vortex shedding process, seeding particles that are initially accumulated near the seafloor are suspended by an upward jet formed by vortices interacting. Model-data comparisons are carried out to examine the accuracy of the model. Overall model-data comparisons are in satisfactory agreement, but modeled results sometimes fail to predict the positions of the induced vortices. Since the measured data is unique in terms of velocity and turbulence, the dataset can be used for further improvement of numerical modeling.

1998 ◽  
Vol 14 (3) ◽  
pp. 153-159 ◽  
Author(s):  
Chou-Jiu Tsai ◽  
Ger-Jyh Chen

ABSTRACTIn this study, fluid flow around bluff bodies are studied to examine the vortex shedding phenomenon in conjuction with the geometrical shapes of these vortex shedders. These flow phenomena are numerically simulated. A finite volume method is employed to solve the incompressible two-dimensional Navier-Stokes equations. Thus, quantitative descriptions of the vortex shedding phenomenon in the near wake were made, which lead to a detailed description of the vortex shedding mechanism. Streamline contours, figures of lift coefficent, and figures of drag coefficent in various time, are presented, respectively, for a physical description.


1994 ◽  
Vol 271 ◽  
pp. 1-16 ◽  
Author(s):  
Peter Y. Huang ◽  
Jimmy Feng ◽  
Daniel D. Joseph

We do a direct two-dimensional finite-elment simulation of the Navier–Stokes equations and compute the forces which turn an ellipse settling in a vertical channel of viscous fluid in a regime in which the ellipse oscillates under the action of vortex shedding. Turning this way and that is induced by large and unequal values of negative pressure at the rear separation points which are here identified with the two points on the back face where the shear stress vanishes. The main restoring mechanism which turns the broadside of the ellipse perpendicular to the fall is the high pressure at the ‘stagnation point’ on the front face, as in potential flow, which is here identified with the one point on the front face where the shear stress vanishes.


1995 ◽  
Vol 1 (3-4) ◽  
pp. 225-235 ◽  
Author(s):  
M. J. Braun ◽  
M. Dzodzo

The flow in a hydrostatic pocket is numerically simulated using a dimensionless formulation of the 2-D Navier-Stokes equations written in primitive variables, for a body fitted coordinates system, and applied through a collocated grid. In essence, we continue the work of Braun et al. 1993a, 1993b] and extend it to the study of the effects of the pocket geometric format on the flow pattern and pressure distribution. The model includes the coupling between the pocket flow and a finite length feedline flow, on one hand, and the pocket and its adjacent lands on the other hand. In this context we shall present, on a comparative basis, the flow and the pressure patterns at the runner surface for square, ramped-Rayleigh step, and arc of circle pockets. Geometrically all pockets have the same footprint, same lands length, and same capillary feedline. The numerical simulation uses the Reynolds number based on the lid(runner) velocity and the inlet jet strengthFas the dynamic similarity parameters. The study aims at establishing criteria for the optimization of the pocket geometry in the larger context of the performance of a hydrostatic bearing.


Author(s):  
Nadeem Ahmed Sheikh ◽  
M. Afzaal Malik ◽  
Arshad Hussain Qureshi ◽  
M. Anwar Khan ◽  
Shahab Khushnood

Flow past a blunt body, such as a circular cylinder, usually experiences boundary layer separation and very strong flow oscillations in the wake region behind the body at a discrete frequency that is correlated to the Reynolds number of the flow. The periodic nature of the vortex shedding phenomenon can sometimes lead to unwanted structural vibrations. The effect of vibrating instability of a single cylinder is investigated in a uniform flow using the power of computational methods. Fluid structure coupling procedure predicts the fluid forces responsible for structural vibrations. An implicit approach to the solution of the unsteady two-dimensional Navier-Stokes equations is used for computation of flow parameters. Calculations are performed in parallel using a domain re-meshing/deforming technique with efficient communication requirements. Results for the unsteady shedding flow behind a circular cylinder are presented with experimental comparisons, showing the feasibility of accurate, efficient, time-dependent estimation of shedding frequency and resulting vibrations.


Author(s):  
Xu Sun ◽  
Jia-Zhong Zhang

In this paper, aerodynamic performance of the NACA0012 airfoil in the incompressible flow with a lower Reynolds number (Re) is investigated numerically from the viewpoints of flow pattern and nonlinear dynamics. First, the characteristic-based split (CBS) finite element method is introduced for the approximation of the incompressible Navier-Stokes equations, and then the lid-driven cavity flow and flow around a circular cylinder are calculated for varification. Then, at Re = 1000, flow fields around the NACA0012 airfoil at a series of angles of attack are simulated. With the increase of the attack angle, great change of the flow pattern appears, and the flow structures such as trailing edge vortex, separation bubble and shedding vortex are observed. Moreover, it is found that the separation bubble plays an important role in the deterioration of the flow stability at higher attack angles, and the vortex shedding can be taken as the result of a Hopf bifurcation while the bifurcation parameter is the angle of attack.


2011 ◽  
Vol 264-265 ◽  
pp. 1574-1579
Author(s):  
H. Namaki ◽  
S. Hossein Seyedein ◽  
M.R. Afshar Moghadam ◽  
R. Ghasemzadeh

In this study, a mathematical model was developed to simulate 2-D axisymmetric melt flow under magnetic field in a cylindrical container. The modeling of this process required the simultaneous solution of the turbulent Navier-Stokes equations together with Maxwell equations. The flow pattern in liquid bath was obtained using a two-equation κ-є turbulent flow model, which was further used to obtain the solute distribution. The governing differential equations were solved numerically using finite volume based finite difference method. The computed results, were found to be in good agreement with the measurements reported in the literature. The effect of stirring parameters on temperature homogeneity of the melt have been discussed and presented.


1996 ◽  
Vol 314 ◽  
pp. 227-246 ◽  
Author(s):  
Philip A. J. Mees ◽  
K. Nandakumar ◽  
J. H. Masliyah

Steady developing flow of an incompressible Newtonian fluid in a curved duct of square cross-section (the Dean problem) is investigated both experimentally and numerically. This study is a continuation of the work by Bara, Nandakumar & Masliyah (1992) and is focused on flow rates between Dn = 200 and Dn = 600 (Dn = Re/(R/a)1/2, where Re is the Reynolds number, R is the radius of curvature of the duct and a is the duct dimension; the curvature ratio, R/a, is 15.1).Numerical simulations based on the steady three-dimensional Navier – Stokes equations predict the development of a 6-cell secondary flow pattern above a Dean number of 350. The 6-cell state consists of two large Ekman vortices and two pairs of small Dean vortices near the outer wall that result from the primary instability that is of centrifugal nature. The 6-cell flow state develops near θ = 80° and breaks down symmetrically into a 2-cell flow pattern.The apparatus used to verify the simulations had a duct dimension of 1.27 cm and a streamwise length of 270°. At a Dean number of 453, different velocity profiles of the 6-cell flow state at θ = 90° and spanwise profiles of the streamwise velocity at every 20° were measured using a laser-Doppler anemometer. All measured velocity profiles, as well as flow visualization of secondary flow patterns, are in very good agreement with the simulations, indicating that the parabolized Navier – Stokes equations give an accurate description of the flow.Based on the similarity with boundary layer flow over a concave wall (the Görtler problem), it is suggested that the transition to the 6-cell flow state is the result of a decreasing spanwise wavelength of the Dean vortices with increasing flow rate. A numerical stability analysis shows that the 6-cell flow state is unconditionally unstable. This is the first time that detailed experiments and simulations of the development of a 6-cell flow state are reported.


Author(s):  
Hadi Karrabi ◽  
Mohsen Rezasoltani

An investigation to understand the impact of twisted, leaned and bowed blades on the performance of axial turbine was undertaken. A CFD code, which solves the Reynolds-averaged Navier–Stokes equations, was used to compute the complex flow field of axial turbine. The code was validated against existing Hannover turbine experimental data. Numerical data showed good agreement with measured data. Finally, the effect of geometry changes, focusing on blade lean, twist and bow, on the Avon turbine blade performance, was analyzed. Results show that twisted blade affects performance significantly. Leaned and bowed blade has minor effect on performance.


Author(s):  
Wei Ning ◽  
Li He

A numerical study has been carried out to investigate modelling issues on trailing edge vortex shedding. The vortex shedding from a circular cylinder and a VKI turbine blade is calculated using a 2-D unsteady multi-block Navier-Stokes solver. The unsteady stresses are calculated from the unsteady solutions. The distributions of the unsteady stresses are analysed and compared for the cylinder case and the cascade case, respectively. The time-averaged equations are then solved and the effectiveness of the “unsteady stresses” in suppressing trailing edge vortex shedding is checked. Finally, the time-independent solution produced by solving the time-averaged equations is compared with the time-averaged solution obtained by integrating the unsteady solutions. The numerical results have demonstrated that a time-independent vortex shedding solution can be achieved by solving the Navier-Stokes equations with the unsteady stresses and the time-averaged effects of the vortex shedding can be included.


2005 ◽  
Vol 333 (4) ◽  
pp. 351-357 ◽  
Author(s):  
Pierre Lubin ◽  
Stéphane Vincent ◽  
Jean-Paul Caltagirone

Sign in / Sign up

Export Citation Format

Share Document