scholarly journals X-Ray Study of Nanocrystalline Ribbons FeCuNbSiB Subjected to Thermomechanical and Thermomagnetic Treatments

2000 ◽  
Vol 34 (4) ◽  
pp. 227-232
Author(s):  
I. V. Gervasyeva ◽  
H. J. Bunge ◽  
K. Helming ◽  
V. A. Lukshina ◽  
I. V. Alexandrov

An attempt to discover the structure peculiarities giving rise to induced magnetic anisotropy in a finemet subjected to thermomechanical or thermomagnetic treatment has been undertaken. Grain size, internal stresses and texture in FeCuNbSiB ribbons were investigated. It was concluded that the induced magnetic anisotropy must have another reason e.g., directional ordering of Si atoms.

1995 ◽  
Vol 384 ◽  
Author(s):  
T. Yeh ◽  
L. Berg ◽  
J. Falenschek ◽  
J. Yue

ABSTRACTThe structure and properties of sputter NiFe thin film deposited on both thermal oxide and thin tantalum nitride have been studied. The magnetic anisotropy field HK increases to 8.2 Oe when the NiFe film was deposited on a thin tantalum nitride underlayer. Anisotropic stress was found on the sample film with tantalum nitride underlayer. Results of X-ray diffraction show that a thin tantalum nitride underlayer appears to promote a preferred crystalline orientation formation of the NiFe film. The induced magnetic anisotropy is attributed to the formation of the preferred crystalline orientation and the induced anisotropic magnetoelastic energy which is associated with the anisotropic stress of the sample film.


1999 ◽  
Vol 32 (1-4) ◽  
pp. 269-279 ◽  
Author(s):  
G. V. Kurlyandskaya ◽  
M. Vázquez ◽  
E. H.C.P. Sinnecker ◽  
A. P. Zhukov ◽  
J. P. Sinnecker ◽  
...  

In this paper we present studies on the frequency dependence of the magneto-impedance in the range of 0.1–2 MHz for Fe73.5Si13.5B9Nb3Cu1 and Fe73.5Si16.5B6Nb3Cu1 nanocrystalline ribbons, which differ in the sign of the magnetostriction constant. As cast samples were annealed in Ar atmosphere at 560℃, with and without an DC and AC magnetic field. At a fixed frequency, an improvement in the field annealed 13.5% Si samples, when compared with the zero field annealed ones, can be observed. On the 16.5% Si field annealed samples only a reduction of magneto-impedance ratio could be observed, when compared to the non-field annealed ones. Analysis of the magnetic properties and X-ray data shows that the observed changes in magneto-impedance effect are consequence of the induced magnetic anisotropy.


Author(s):  
R. Sinclair ◽  
B.E. Jacobson

INTRODUCTIONThe prospect of performing chemical analysis of thin specimens at any desired level of resolution is particularly appealing to the materials scientist. Commercial TEM-based systems are now available which virtually provide this capability. The purpose of this contribution is to illustrate its application to problems which would have been intractable until recently, pointing out some current limitations.X-RAY ANALYSISIn an attempt to fabricate superconducting materials with high critical currents and temperature, thin Nb3Sn films have been prepared by electron beam vapor deposition [1]. Fine-grain size material is desirable which may be achieved by codeposition with small amounts of Al2O3 . Figure 1 shows the STEM microstructure, with large (∽ 200 Å dia) voids present at the grain boundaries. Higher quality TEM micrographs (e.g. fig. 2) reveal the presence of small voids within the grains which are absent in pure Nb3Sn prepared under identical conditions. The X-ray spectrum from large (∽ lμ dia) or small (∽100 Ǻ dia) areas within the grains indicates only small amounts of A1 (fig.3).


2021 ◽  
Vol 56 (19) ◽  
pp. 11237-11247 ◽  
Author(s):  
Johannes Pötschke ◽  
Manisha Dahal ◽  
Mathias Herrmann ◽  
Anne Vornberger ◽  
Björn Matthey ◽  
...  

AbstractDense (Hf, Ta, Nb, Ti, V)C- and (Ta, Nb, Ti, V, W)C-based high-entropy carbides (HEC) were produced by three different sintering techniques: gas pressure sintering/sinter–HIP at 1900 °C and 100 bar Ar, vacuum sintering at 2250 °C and 0.001 bar as well as SPS/FAST at 2000 °C and 60 MPa pressure. The relative density varied from 97.9 to 100%, with SPS producing 100% dense samples with both compositions. Grain size measurements showed that the substitution of Hf with W leads to an increase in the mean grain size of 5–10 times the size of the (Hf, Ta, Nb, Ti, V,)C samples. Vacuum-sintered samples showed uniform grain size distribution regardless of composition. EDS mapping revealed the formation of a solid solution with no intermetallic phases or element clustering. X-ray diffraction analysis showed the structure of mostly single-phase cubic high-entropy carbides. Hardness measurements revealed that (Hf, Ta, Nb, Ti, V)C samples possess higher hardness values than (Ta, Nb, Ti, V, W)C samples.


2021 ◽  
pp. 174751982098472
Author(s):  
Lalmi Khier ◽  
Lakel Abdelghani ◽  
Belahssen Okba ◽  
Djamel Maouche ◽  
Lakel Said

Kaolin M1 and M2 studied by X-ray diffraction focus on the mullite phase, which is the main phase present in both products. The Williamson–Hall and Warren–Averbach methods for determining the crystallite size and microstrains of integral breadth β are calculated by the FullProf program. The integral breadth ( β) is a mixture resulting from the microstrains and size effect, so this should be taken into account during the calculation. The Williamson–Hall chart determines whether the sample is affected by grain size or microstrain. It appears very clearly that the principal phase of the various sintered kaolins, mullite, is free from internal microstrains. It is the case of the mixtures fritted at low temperature (1200 °C) during 1 h and also the case of the mixtures of the type chamotte cooks with 1350 °C during very long times (several weeks). This result is very significant as it gives an element of explanation to a very significant quality of mullite: its mechanical resistance during uses at high temperature remains.


1978 ◽  
Vol 21 (4) ◽  
pp. 509-512
Author(s):  
A. I. Drokin ◽  
A. V. Ivanova

Sign in / Sign up

Export Citation Format

Share Document