Distribution of Liposomes into Brain and Rat Brain Tumor Models by Convection-Enhanced Delivery Monitored with Magnetic Resonance Imaging

2004 ◽  
Vol 64 (7) ◽  
pp. 2572-2579 ◽  
Author(s):  
Ryuta Saito ◽  
John R. Bringas ◽  
Tracy R. McKnight ◽  
Michael F. Wendland ◽  
Christoph Mamot ◽  
...  
2021 ◽  
Vol 11 (3) ◽  
pp. 352
Author(s):  
Isselmou Abd El Kader ◽  
Guizhi Xu ◽  
Zhang Shuai ◽  
Sani Saminu ◽  
Imran Javaid ◽  
...  

The classification of brain tumors is a difficult task in the field of medical image analysis. Improving algorithms and machine learning technology helps radiologists to easily diagnose the tumor without surgical intervention. In recent years, deep learning techniques have made excellent progress in the field of medical image processing and analysis. However, there are many difficulties in classifying brain tumors using magnetic resonance imaging; first, the difficulty of brain structure and the intertwining of tissues in it; and secondly, the difficulty of classifying brain tumors due to the high density nature of the brain. We propose a differential deep convolutional neural network model (differential deep-CNN) to classify different types of brain tumor, including abnormal and normal magnetic resonance (MR) images. Using differential operators in the differential deep-CNN architecture, we derived the additional differential feature maps in the original CNN feature maps. The derivation process led to an improvement in the performance of the proposed approach in accordance with the results of the evaluation parameters used. The advantage of the differential deep-CNN model is an analysis of a pixel directional pattern of images using contrast calculations and its high ability to classify a large database of images with high accuracy and without technical problems. Therefore, the proposed approach gives an excellent overall performance. To test and train the performance of this model, we used a dataset consisting of 25,000 brain magnetic resonance imaging (MRI) images, which includes abnormal and normal images. The experimental results showed that the proposed model achieved an accuracy of 99.25%. This study demonstrates that the proposed differential deep-CNN model can be used to facilitate the automatic classification of brain tumors.


2009 ◽  
Vol 110 (4) ◽  
pp. 737-739 ◽  
Author(s):  
Joo-Hun David Eum ◽  
Astrid Jeibmann ◽  
Werner Wiesmann ◽  
Werner Paulus ◽  
Heinrich Ebel

Primary intracerebral manifestation of multiple myeloma is rare and usually arises from the meninges or brain parenchyma. The authors present a case of multiple myeloma primarily manifesting within the lateral ventricle. A 67-year-old man was admitted with headache accompanied by slowly progressing right hemiparesis. Magnetic resonance imaging showed a large homogeneous contrast-enhancing intraventricular midline mass and hydrocephalus. The tumor was completely resected, and histopathological examination revealed plasmacytoma. After postoperative radio- and chemotherapy, vertebral osteolysis was detected as a secondary manifestation of multiple myeloma.


2011 ◽  
Vol 32 (3) ◽  
pp. 489-501 ◽  
Author(s):  
Adriana T Perles-Barbacaru ◽  
Boudewijn PJ van der Sanden ◽  
Regine Farion ◽  
Hana Lahrech

To assess angiogenesis noninvasively in a C6 rat brain tumor model, the rapid-steady-state- T1 (RSST1) magnetic resonance imaging (MRI) method was used for microvascular blood volume fraction (BVf) quantification with a novel contrast agent gadolinium per (3,6 anhydro) α-cyclodextrin (Gd-ACX). In brain tissue contralateral to the tumor, equal BVfs were obtained with Gd-ACX and the clinically approved gadoterate meglumine (Gd-DOTA). Contrary to Gd-DOTA, which leaks out of the tumor vasculature, Gd-ACX was shown to remain vascular in the tumor tissue allowing quantification of the tumor BVf. We sought to confirm the obtained tumor BVf using an independent method: instead of using a ‘standard’ two-dimensional histologic method, we study here how vascular morphometry combined with a stereological technique can be used for three-dimensional assessment of the vascular volume fraction ( VV). The VV is calculated from the vascular diameter and length density. First, the technique is evaluated on simulated data and the healthy rat brain vasculature and is then applied to the same C6 tumor vasculature previously quantified by RSST1-MRI with Gd-ACX. The mean perfused VV and the BVf obtained by MRI in tumor regions are practically equal and the technique confirms the spatial heterogeneity revealed by MRI.


1998 ◽  
Vol 5 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Michael H. Lev ◽  
Fred Hochberg

Background: Although magnetic resonance imaging (MRI) is effective in detecting the location of intracranial tumors, new imaging techniques have been studied that may enhance the specificity for the prediction of histologic grade of tumor and for the distinction between recurrence and tumor necrosis associated with cancer therapy. Methods: The authors review their experience and that of others on the use of perfusion magnetic resonance imaging to evaluate responses of brain tumors to new therapies. Results: Functional imaging techniques that can distinguish tumor from normal brain tissue using physiological parameters. These new approaches provide maps of tumor perfusion to monitor the effects of novel compounds that restrict tumor angiogenesis. Conclusions: Perfusion MRI not only may be as effective as radionuclide-based techniques in sensitivity and specificity in assessing brain tumor responses to new therapies, but also may offer higher resolution and convenient co-registration with conventional MRI, as well as time- and cost-effectiveness. Further study is needed to determine the role of perfusion MRI in assessing brain tumor responses to new therapies.


Sign in / Sign up

Export Citation Format

Share Document