scholarly journals ETS Transcription Factor ESE1/ELF3 Orchestrates a Positive Feedback Loop That Constitutively Activates NF-κB and Drives Prostate Cancer Progression

2013 ◽  
Vol 73 (14) ◽  
pp. 4533-4547 ◽  
Author(s):  
Nicole Longoni ◽  
Manuela Sarti ◽  
Domenico Albino ◽  
Gianluca Civenni ◽  
Anastasia Malek ◽  
...  
Oncogenesis ◽  
2019 ◽  
Vol 8 (3) ◽  
Author(s):  
Mei Qi ◽  
Jing Hu ◽  
Yanyi Cui ◽  
Meng Jiao ◽  
Tingting Feng ◽  
...  

Planta ◽  
2017 ◽  
Vol 247 (1) ◽  
pp. 53-68 ◽  
Author(s):  
Tingting Ren ◽  
Jiawei Wang ◽  
Mingming Zhao ◽  
Xiaoming Gong ◽  
Shuxia Wang ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Tao Guo ◽  
Defeng Liu ◽  
Shihao Peng ◽  
Meng Wang ◽  
Yangyang Li

BackgroundColorectal cancer (CRC) is a common malignant tumor with high metastatic and recurrent rates. This study probes the effect and mechanism of long non-coding RNA MIR31HG on the progression of CRC cells.Materials and MethodsQuantitative real-time PCR (qRT-PCR) was used to analyze the expression of MIR31HG and miR-361-3p in CRC tissues and normal tissues. Gain- or loss-of-function assays were conducted to examine the roles of MIR31HG, miR-361-3p and YY1 transcription factor (YY1) in the CRC progression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and colony formation experiment were conducted to test CRC cell proliferation. CRC cell invasion was determined by Transwell assay. The glucose detection kit and lactic acid detection kit were utilized to monitor the levels of glucose and lactate in CRC cells. The glycolysis level in CRC cells was examined by the glycolytic stress experiment. Western blot was performed to compare the expression of glycolysis-related proteins (PKM2, GLUT1 and HK2) and angiogenesis-related proteins (including VEGFA, ANGPT1, HIF1A and TIMP1) in HUVECs. The binding relationships between MIR31HG and miR-361-3p, miR-361-3p and YY1 were evaluated by the dual-luciferase reporter assay and RNA immunoprecipitation (RIP).ResultsMIR31HG was up-regulated in CRC tissues and was associated with poorer prognosis of CRC patients. The in-vitro and in-vivo experiments confirmed that overexpressing MIR31HG heightened the proliferation, growth, invasion, glycolysis and lung metastasis of CRC cells as well as the angiogenesis of HUVECs. In addition, MIR3HG overexpression promoted YY1 mRNA and protein level, and forced overexpression of YY1 enhanced MIR31HG level. Overexpressing YY1 reversed the tumor-suppressive effect mediated by MIR31HG knockdown. miR-361-3p, which was inhibited by MIR31HG overexpression, repressed the malignant behaviors of CRC cells. miR-361-3p-mediated anti-tumor effects were mostly reversed by upregulating MIR31HG. Further mechanism studies illustrated that miR-361-3p targeted and negatively regulated the expression of YY1.ConclusionThis study reveals that MIR31HG functions as an oncogenic gene in CRC via forming a positive feedback loop of MIR31HG-miR-361-3p-YY1.


2019 ◽  
Author(s):  
Chi Hin Wong ◽  
Chi Han Li ◽  
Qifang He ◽  
Joanna Hung Man Tong ◽  
Ka-Fai To ◽  
...  

SUMMARYLong non-coding RNA HOX Transcript Antisense RNA (HOTAIR) is overexpressed in multiple cancers with diverse genetic profiles, which heavily contributed to cancer progression. However, the underlying mechanism leading to HOTAIR deregulation is largely unexplored. Here, we revealed that gene body methylation promoted HOTAIR expression through enhancing the transcription elongation process in cancer. We linked up the aberrant gene body histone and DNA methylation in promoting transcription elongation via phosphorylation of Polymerase II Ser 2 by CDK7-CDK9, and elucidated the mechanism of a positive feedback loop involving CDK7, MLL1 and DNMT3A in promoting gene body methylation and overexpressing HOTAIR. To our knowledge, this is the first time to demonstrate that a positive feedback loop that involved CDK9-mediated phosphorylation of PolII and histone and gene body methylation induced robust transcriptional elongation, which heavily contributed to the upregulation of oncogenic lncRNA in cancer.


Sign in / Sign up

Export Citation Format

Share Document