scholarly journals A Positive Feedback Loop of lncRNA MIR31HG-miR-361-3p -YY1 Accelerates Colorectal Cancer Progression Through Modulating Proliferation, Angiogenesis, and Glycolysis

2021 ◽  
Vol 11 ◽  
Author(s):  
Tao Guo ◽  
Defeng Liu ◽  
Shihao Peng ◽  
Meng Wang ◽  
Yangyang Li

BackgroundColorectal cancer (CRC) is a common malignant tumor with high metastatic and recurrent rates. This study probes the effect and mechanism of long non-coding RNA MIR31HG on the progression of CRC cells.Materials and MethodsQuantitative real-time PCR (qRT-PCR) was used to analyze the expression of MIR31HG and miR-361-3p in CRC tissues and normal tissues. Gain- or loss-of-function assays were conducted to examine the roles of MIR31HG, miR-361-3p and YY1 transcription factor (YY1) in the CRC progression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and colony formation experiment were conducted to test CRC cell proliferation. CRC cell invasion was determined by Transwell assay. The glucose detection kit and lactic acid detection kit were utilized to monitor the levels of glucose and lactate in CRC cells. The glycolysis level in CRC cells was examined by the glycolytic stress experiment. Western blot was performed to compare the expression of glycolysis-related proteins (PKM2, GLUT1 and HK2) and angiogenesis-related proteins (including VEGFA, ANGPT1, HIF1A and TIMP1) in HUVECs. The binding relationships between MIR31HG and miR-361-3p, miR-361-3p and YY1 were evaluated by the dual-luciferase reporter assay and RNA immunoprecipitation (RIP).ResultsMIR31HG was up-regulated in CRC tissues and was associated with poorer prognosis of CRC patients. The in-vitro and in-vivo experiments confirmed that overexpressing MIR31HG heightened the proliferation, growth, invasion, glycolysis and lung metastasis of CRC cells as well as the angiogenesis of HUVECs. In addition, MIR3HG overexpression promoted YY1 mRNA and protein level, and forced overexpression of YY1 enhanced MIR31HG level. Overexpressing YY1 reversed the tumor-suppressive effect mediated by MIR31HG knockdown. miR-361-3p, which was inhibited by MIR31HG overexpression, repressed the malignant behaviors of CRC cells. miR-361-3p-mediated anti-tumor effects were mostly reversed by upregulating MIR31HG. Further mechanism studies illustrated that miR-361-3p targeted and negatively regulated the expression of YY1.ConclusionThis study reveals that MIR31HG functions as an oncogenic gene in CRC via forming a positive feedback loop of MIR31HG-miR-361-3p-YY1.

Author(s):  
Jin-Chun Qi ◽  
Zhan Yang ◽  
Tao Lin ◽  
Long Ma ◽  
Ya-Xuan Wang ◽  
...  

Abstract Background Both E2F transcription factor and cyclin-dependent kinases (CDKs), which increase or decrease E2F activity by phosphorylating E2F or its partner, are involved in the control of cell proliferation, and some circRNAs and miRNAs regulate the expression of E2F and CDKs. However, little is known about whether dysregulation among E2Fs, CDKs, circRNAs and miRNAs occurs in human PCa. Methods The expression levels of CDK13 in PCa tissues and different cell lines were determined by quantitative real-time PCR and Western blot analysis. In vitro and in vivo assays were preformed to explore the biological effects of CDK13 in PCa cells. Co-immunoprecipitation anlysis coupled with mass spectrometry was used to identify E2F5 interaction with CDK13. A CRISPR-Cas9 complex was used to activate endogenous CDK13 and circCDK13 expression. Furthermore, the mechanism of circCDK13 was investigated by using loss-of-function and gain-of-function assays in vitro and in vivo. Results Here we show that CDK13 is significantly upregulated in human PCa tissues. CDK13 depletion and overexpression in PCa cells decrease and increase, respectively, cell proliferation, and the pro-proliferation effect of CDK13 is strengthened by its interaction with E2F5. Mechanistically, transcriptional activation of endogenous CDK13, but not the forced expression of CDK13 by its expression vector, remarkably promotes E2F5 protein expression by facilitating circCDK13 formation. Further, the upregulation of E2F5 enhances CDK13 transcription and promotes circCDK13 biogenesis, which in turn sponges miR-212-5p/449a and thus relieves their repression of the E2F5 expression, subsequently leading to the upregulation of E2F5 expression and PCa cell proliferation. Conclusions These findings suggest that CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 is responsible for PCa development. Targeting this newly identified regulatory axis may provide therapeutic benefit against PCa progression and drug resistance.


Author(s):  
Bin Zhu ◽  
Jun-Jie Chen ◽  
Ying Feng ◽  
Jun-Ling Yang ◽  
Hua Huang ◽  
...  

Abstract Background Angiogenesis plays an important role in the occurrence, development and metastasis of hepatocellular carcinoma (HCC). According to previous studies, miR-378a participates in tumorigenesis and tumor metastasis, but its exact role in HCC angiogenesis remains poorly understood. Methods qRT-PCR was used to investigate the expression of miR-378a-3p in HCC tissues and cell lines. The effects of miR-378a-3p on HCC in vitro and in vivo were examined by Cell Counting Kit-8 (CCK-8), Transwell, tube formation and Matrigel plug assays, RNA sequencing, bioinformatics, luciferase reporter, immunofluorescence and chromatin immunoprecipitation (ChIP) assays were used to detect the molecular mechanism by which miR-378a-3p inhibits angiogenesis. Results We confirmed that miR-378a-3p expression was significantly downregulated and associated with higher microvascular density (MVD) in HCC; miR-378a-3p downregulation indicated a short survival time in HCC patients. miR-378a-3p knockdown led to a significant increase in angiogenesis in vitro and in vivo. We found that miR-378a-3p directly targeted TNF receptor associated factor 1 (TRAF1) to attenuate NF-κB signaling, and then downregulated secreted vascular endothelial growth factor. DNA methyltransferase 1 (DNMT1)-mediated hypermethylation of miR-378a-3p was responsible for downregulating miR-378a-3p. Moreover, a series of investigations indicated that p65 initiated a positive feedback loop that could upregulate DNMT1 to promote hypermethylation of the miR-378a-3p promoter. Conclusion Our study indicates a novel DNMT1/miR-378a-3p/TRAF1/NF-κB positive feedback loop in HCC cells, which may become a potential therapeutic target for HCC.


2021 ◽  
Author(s):  
Shouping Xu ◽  
Lin Wan ◽  
Qin Wang ◽  
Huizi Yin ◽  
Kun Qiao ◽  
...  

Abstract Background: The oncogenic lncRNA based strategies for combating cancer may usher in a new and promising paradigm in cancer therapy. However, few studies have been performed to solve such a critical issue. The complex traits and molecular mechanism of such lncRNAs in tumorigenesis and their relationship with sensitivity of gefitinib in human cancer have not been investigated.Methods: We aimed to identify and validate such a novel oncogenic LINC00036 using transcriptome sequencing approach and a large number of tissue samples of different types of cancer from the our cancer center cohort and public data cohorts from the Cancer Genome Atlas,Gene Expression Omnibus and Cancer Cell Line Encyclopedia. Moreover, series of in vitro and in vivo experiments were performed to examine its roles in tumorigenesis and the sensitivity of gefitinib in different types of cancer cells. Special nanoparticle via a more potent delivery system was developed to investigate the feasibility of targeting LINC00036 in vivo. Furthermore, chromatin immunoprecipitation (ChIP)-sequencing, ChIP, actinomycin D assay, dual-luciferase reporter assay, RNA pull-down and RNA immunoprecipitation were performed were developed to uncover the molecular mechanism.Results: LINC00036 that associated with poor prognosis is significantly upregulated in human cancer tissues. Series of in vitro and in vivo experiments reveal that LINC00036 promotes tumorigenesis and decreases the sensitivity of gefitinib in different types of cancer cells. LINC00036 targeting nanoparticle markedly reduced the growth of human cancer xenografts. Mechanistically, LINC00036 is a direct transcriptional target of c-MYC and a positive feedback loop of the c-MYC-LINC00036-EGFR axis exists in human cancer. LINC00036 acts as an EGFR mRNA stabilizer via RNA-protein and RNA-RNA interactions, inducing the hyper-activation of the downstream AKT and MAPK signaling pathways, which in turn decreases the sensitivity of gefitinib in human cancer.Conclusions: LINC00036, a c-MYC inducible onco-lncRNA, acts an oncogene in human cancer and decreases the sensitivity of gefitinib through positive feedback loop of the c-MYC-LINC00036-EGFR axis. Overall, this study broadens knowledge regarding novel onco-lncRNAs and will assist in developing feasible onco-lncRNAs based-targeted therapeutic strategies to improve the sensitivity of gefitinib in human cancer.


2021 ◽  
Author(s):  
Xu Liu ◽  
Kun Qiao ◽  
Kaiyuan Zhu ◽  
Xianglan Li ◽  
Chunbo Zhao ◽  
...  

Abstract Background: In recent years, a growing number of studies have reported that long non-coding RNAs (LncRNAs) play crucial roles in breast cancer (BC) progression and metastasis. Another study group of our research center reported that LncRNA HCG18 was one of the 30 upregulated lncRNAs in BC tissues related to normal tissues in TCGA database. However, the exactly biological roles of HCG18 in BC remains unclear. Method: qRT-PCR was used to detect the expression profile of HCG18 in BC tissues and cell lines. In vitro assays were used to evaluate the pro-tumor function of HCG18 in BC cells. Animal study were used to explore the role of HCG18 in vivo. Bioinformatic analysis, dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin Immunoprecipitation (ChIP) assays were used to investigate the regulatory relationship of HCG18, miR-103a-3p, UBE2O in BC. Results: HCG18 was upregulated in BC tissues and cells, and BC patients with high HCG18 expression tended to have poor prognosis. HCG18 could promote BC cells proliferation, invasion and provided BC cells with tumor stemness properties (CSPs) in vitro and facilitate tumor growth and lung metastasis in vivo. In terms of mechanism, HCG18 functioned as a miRNA sponge which positively regulated the expression of Ubiquitin-conjugating enzyme E2O (UBE2O) by sponging miR-103a-3p and our previous research achievement have already verified UBE2O could promote malignant phenotypes of BC cells through UBE2O/AMPKα2/mTORC1 axis. Furthermore, as a downstream target of HCG18/miR-103a-3p/UBE2O/mTORC1 axis, HIF-1α transcriptionally promoted HCG18 expression and then formed a positive feedback loop in BC. Conclusion: HCG18 played an oncogenic role in BC and it might serve as a prognostic biomarker and a potential therapeutic target for BC treatment.


Oncogene ◽  
2021 ◽  
Author(s):  
Senlin Zhao ◽  
Bingjie Guan ◽  
Yushuai Mi ◽  
Debing Shi ◽  
Ping Wei ◽  
...  

AbstractGlycolysis plays a crucial role in reprogramming the metastatic tumor microenvironment. A series of lncRNAs have been identified to function as oncogenic molecules by regulating glycolysis. However, the roles of glycolysis-related lncRNAs in regulating colorectal cancer liver metastasis (CRLM) remain poorly understood. In the present study, the expression of the glycolysis-related lncRNA MIR17HG gradually increased from adjacent normal to CRC to the paired liver metastatic tissues, and high MIR17HG expression predicted poor survival, especially in patients with liver metastasis. Functionally, MIR17HG promoted glycolysis in CRC cells and enhanced their invasion and liver metastasis in vitro and in vivo. Mechanistically, MIR17HG functioned as a ceRNA to regulate HK1 expression by sponging miR-138-5p, resulting in glycolysis in CRC cells and leading to their invasion and liver metastasis. More interestingly, lactate accumulated via glycolysis activated the p38/Elk-1 signaling pathway to promote the transcriptional expression of MIR17HG in CRC cells, forming a positive feedback loop, which eventually resulted in persistent glycolysis and the invasion and liver metastasis of CRC cells. In conclusion, the present study indicates that the lactate-responsive lncRNA MIR17HG, acting as a ceRNA, promotes CRLM through a glycolysis-mediated positive feedback circuit and might be a novel biomarker and therapeutic target for CRLM.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Ji Yeon Byun ◽  
Young-So Youn ◽  
Ye-Ji Lee ◽  
Youn-Hee Choi ◽  
So-Yeon Woo ◽  
...  

Recognition of apoptotic cells by macrophages is crucial for resolution of inflammation, immune tolerance, and tissue repair. Cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and hepatocyte growth factor (HGF) play important roles in the tissue repair process. We investigated the characteristics of macrophage COX-2 and PGE2expression mediated by apoptotic cells and then determined how macrophages exposed to apoptotic cellsin vitroandin vivoorchestrate the interaction between COX-2/PGE2and HGF signaling pathways. Exposure of RAW 264.7 cells and primary peritoneal macrophages to apoptotic cells resulted in induction of COX-2 and PGE2. The COX-2 inhibitor NS-398 suppressed apoptotic cell-induced PGE2production. Both NS-398 and COX-2-siRNA, as well as the PGE2receptor EP2 antagonist, blocked HGF expression in response to apoptotic cells. In addition, the HGF receptor antagonist suppressed increases in COX-2 and PGE2induction. Thein vivorelevance of the interaction between the COX-2/PGE2and HGF pathways through a positive feedback loop was shown in cultured alveolar macrophages followingin vivoexposure of bleomycin-stimulated lungs to apoptotic cells. Our results demonstrate that upregulation of the COX-2/PGE2and HGF in macrophages following exposure to apoptotic cells represents a mechanism for mediating the anti-inflammatory and antifibrotic consequences of apoptotic cell recognition.


2021 ◽  
Author(s):  
Junshu Li ◽  
Yanhong Ji ◽  
Na Chen ◽  
Huiling Wang ◽  
Chao Fang ◽  
...  

Abstract BackgroundAdenomatous polyposis coli (APC) gene mutations were found in most colorectal cancer patients and functioned as an important inducer of tumorigenesis. Long non-coding RNA (lncRNA) plays a crucial role in the pathogenesis of various diseases, including colorectal cancer (CRC). Here we investigated the role of SURC which is specific upregulated in CRC progression. MethodsBased on the previous microarray results, weighted correlation network analysis (WGCNA) and lncRNA-mRNA co-expression network analysis were used to identify a lncRNA (SURC) and found it was specific up-regulated in CRC patients by qPCR and FISH staining. Chromatin immunoprecipitation (ChIP) assay was used to demonstrate the regulatory effect and mechanism of APC mutation on SURC expression. The effects of SURC on proliferation and cell cycle were determined by in vitro and in vivo experiments. Chromatin Isolation by RNA Purification (CHIRP) and luciferase reporter assay were carried out to illustrate the interaction between SURC, miR-185-5p and CCND2.ResultsWe found that SURC was specific up-regulated in CRC, but not in other solid tumor, when compared with normal adjacent tissues. High expression of SURC correlates with poorer disease-free survival and overall survival of CRC patients. Mutated APC protein resulted in stabilization of β-catenin in CRC, which promotes the transcription of SURC via binding to its promoter. Knockdown of SURC impaired CRC cell proliferation, colony formation and CRC tumor growth. Mechanistically, after transcription, SURC was transferred to cytoplasm and inhibits miR-185-5p expression via binding to miR-185-5p and inhibiting the synthesis of miR-185-5p from pri-miR-185-5p, which results in CCND2 expression.ConclusionCollectively, these results indicated that SURC promoted CRC tumor growth via interacting with miR-185-5p and regulating the activity of miR-185-5p/CCND2 axis which would be a novel diagnosis and prognosis prediction target for CRC.


2020 ◽  
Author(s):  
Xiaoming Zhang ◽  
Wanxiang Niu ◽  
Maolin Mu ◽  
Shanshan Hu ◽  
Chaoshi Niu

Abstract Background: Glioma is the most common primary malignant intracranial tumor with poorly clinical prognosis in adults. Accumulating evidences indicate that long non-coding RNAs (lncRNAs) have served as important regulators in cancer progression, including glioma. Here, we identified a new lncRNA LPP antisense RNA-2 (LPP-AS2) and investigated its function and mechanism in the occurrence and development of glioma.Methods: High-throughput RNA sequencing was performed to discriminate the differentially expression lncRNAs and mRNAs between glioma tissues and normal brain tissues. The expression of LPP-AS2, epidermal growth factor receptor (EGFR) and miR-7-5p in glioma tissues and cell lines were detected by real-time quantitative PCR (RT-qPCR). The functions of lncRNA LPP-AS2 in glioma were measured by in vivo and in vitro assays. Insights of the underlying mechanism of competitive endogenous RNAs (ceRNAs) were originated from bioinformatic analysis, dual luciferase reporter assays, RNA pulldown assays, RNA immunoprecipitation (RIP) and rescue experiments. Results: The results of high-throughput RNA-seq indicated that lncRNA LPP-AS2 was upregulated in glioma tissues and further confirmed by RT-qPCR. Higher LPP-AS2 expression was related to poor prognosis of glioma patients. Functional studies illustrated that LPP-AS2 depletion inhibited glioma cell proliferation, invasion and promoted apoptosis in vitro and restrained tumor growth in vivo, whereas overexpression of LPP-AS2 resulted in opposite effects. In addition, LPP-AS2 and EGFR were observed of co-expression networks, and LPP-AS2 functioned as a ceRNA to regulate EGFR expression by sponging miR-7-5p in glioma cells. Result of chromatin immunoprecipitation (ChIP) assay validated that c-MYC was directly bind with promoter region of LPP-AS2. As a downstream protein of EGFR, c-MYC was modulated by LPP-AS2 and in turn increased LPP-AS2 expression. Thus, lncRNA LPP-AS2 promoted glioma tumorigenesis via a miR-7-5p/EGFR/PI3K/AKT/c-MYC feedback loop. Conclusions: Our study elucidated that LPP-AS2 acted as an oncogene through a novel molecular pathway in glioma and might be a potential therapeutic approach for glioma diagnosis, therapy and prognosis.


2020 ◽  
Author(s):  
Lining Huang ◽  
Xingming Jiang ◽  
Zhenglong Li ◽  
Jinglin Li ◽  
Xuan Lin ◽  
...  

Abstract Background: Cholangiocarcinoma (CCA) is a mortal cancer with high mortality, whereas the function and mechanism of occurrence and progression of CCA are still mysterious. Long non-coding RNAs (lncRNAs) could function as important regulators in carcinogenesis and cancer progression. Growing evidences have indicated that the novel lncRNA linc00473 plays an important role in cancer progression and metastasis. However, its function and molecular mechanism in CCA remain unknown. Methods: The linc00473 expression in CCA tissues and cell lines was analyzed using qRT-PCR. Gain- and loss-of-function experiments were conducted to investigate the biological functions of linc00473 both in vitro and in vivo. Insights into the underlying mechanisms of competitive endogenous RNAs (ceRNAs) were determined by bioinformatics analysis, dual-luciferase reporter assays, qRT-PCR arrays, RNA immunoprecipitation (RIP) and rescue experiments. Results: Linc00473 was highly expressed in CCA tissues and cell lines. Linc00473 knockdown inhibited CCA growth and metastasis. Furthermore, linc00473 acted as miR-506 sponge and regulated its target gene DDX5 expression. Rescue assays verified that linc00473 modulated the tumorigenesis of CCA by regulating miR-506. Conclusions: The data indicated that linc00473 played an oncogenic role in CCA growth and metastasis, and could serve as a novel molecular target for treating CCA.


Sign in / Sign up

Export Citation Format

Share Document