scholarly journals Silencing Egr1 Attenuates Radiation-Induced Apoptosis in Normal Tissues while Killing Cancer Cells and Delaying Tumor Growth

2015 ◽  
Vol 14 (10) ◽  
pp. 2343-2352 ◽  
Author(s):  
Diana Yi Zhao ◽  
Keith M. Jacobs ◽  
Dennis E. Hallahan ◽  
Dinesh Thotala
Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 386 ◽  
Author(s):  
Hiroshi Sugano ◽  
Yoshihiro Shirai ◽  
Takashi Horiuchi ◽  
Nobuhiro Saito ◽  
Yohta Shimada ◽  
...  

Neoadjuvant chemoradiotherapy followed by radical surgery is the standard treatment for patients with locally advanced low rectal cancer. However, several studies have reported that ionizing radiation (IR) activates nuclear factor kappa B (NF-κB) that causes radioresistance and induces matrix metalloproteinase (MMP)-2/-9, which promote tumor migration and invasion. Nafamostat mesilate (FUT175), a synthetic serine protease inhibitor, enhances the chemosensitivity to cytotoxic agents in digestive system cancer cells by inhibiting NF-κB activation. Therefore, we evaluated the combined effect of IR and FUT175 on cell proliferation, migration and invasion of colorectal cancer (CRC) cells. IR-induced upregulation of intranuclear NF-κB, FUT175 counteracted this effect. Moreover, the combination treatment suppressed cell viability and induced apoptosis. Similar effects were also observed in xenograft tumors. In addition, FUT175 prevented the migration and invasion of cancer cells caused by IR by downregulating the enzymatic activity of MMP-2/-9. In conclusion, FUT175 enhances the anti-tumor effect of radiotherapy through downregulation of NF-κB and reduces IR-induced tumor invasiveness by directly inhibiting MMP-2/-9 in CRC cells. Therefore, the use of FUT175 during radiotherapy might improve the efficacy of radiotherapy in patients with CRC.


2008 ◽  
Vol 11 (2) ◽  
Author(s):  
Alison J. Butt

Citation of original article:C. Lagadec, E. Adriaenssens, R. A. Toillon, V. Chopin, R. Romon, F. Van Coppenolle, H. Hondermarck, X. Le Bourhis. Oncogene advance online publication, 3 September 2007; doi:10.1038/sj.onc.1210749.Abstract of the original article:Tamoxifen (TAM), is widely used as a single agent in adjuvant treatment of breast cancer. Here, we investigated the effects of TAM in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in estrogen receptor-α (ER-α)-positive and -negative breast cancer cells. We showed that cotreatment with TAM and TRAIL synergistically induced apoptosis regardless of ER-α status. By contrast, cotreatment did not affect the viability of normal breast epithelial cells. Cotreatment with TAM and TRAIL in breast cancer cells decreased the levels of antiapoptotic proteins including FLIPs and Bcl-2, and enhanced the levels of proapoptotic proteins such as FADD, caspase 8, tBid, Bax and caspase 9. Furthermore, cotreatment-induced apoptosis was efficiently reduced by FADD- or Bid-siRNA, indicating the implication of both extrinsic and intrinsic pathways in synergistic apoptosis induction. Importantly, cotreatment totally arrested tumor growth in an ER-α-negative MDA-MB-231 tumor xenograft model. The abrogation of tumor growth correlated with enhanced apoptosis in tumor tissues. Our findings raise the possibility to use TAM in combination with TRAIL for breast cancers, regardless of ER-α status.


2011 ◽  
Vol 404 (4) ◽  
pp. 1070-1075 ◽  
Author(s):  
Kei Yoshino ◽  
Satoru Motoyama ◽  
Souichi Koyota ◽  
Kaori Shibuya ◽  
Shuetsu Usami ◽  
...  

2008 ◽  
Vol 144 (2) ◽  
pp. 283-284
Author(s):  
Derrick Chen ◽  
Laura Ortega ◽  
David Chen ◽  
Edward H. Livingston ◽  
Sergio Huerta

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14719-e14719
Author(s):  
Hyeong Su Kim ◽  
Dae Young Zang ◽  
Sung-Hwa Sohn ◽  
Bohyun Kim ◽  
Hee Jung Sul

e14719 Background: VEGFA is the key mediator of angiogenesis in cancer and previous studies reported that VEGFA expression was significantly up-regulated in gastric cancer tissues compared with matched normal tissues. We showed that increased levels of VEGFA are significantly associated with expression of hepatocyte growth factor receptor (MET) (r = 0.6255, P < 0.0001). In addition, it is well known that c-MET is potentially a highly plausible target for cancer therapy in gastric cancer. In this study, cytotoxic activity of tivantinib were evaluated in gastric cancer cells with high c-MET expression or VEGFA amplification. Methods: In this study, Western blot and quantitative real-time PCR analysis were used to detect the expression of protein and genes after treatment of tivantinib. In addition, MTS, flow cytometry, and migration assay were used. Results: Tivantinib inhibited growths of a high c-MET-expressed or VEGFA-amplified cell lines. Furthermore, in migration and apoptosis analysis, tivantinib induced apoptosis of SNU620, MKN45 (carried VEGFB mutation), AGS, and MKN28 cells but not in KATO III (carried VEGFB and VEGFC mutation) cells. We also found that tivantinib inhibited the VEGF signaling pathway and MYC expression in VEGFA-amplified gastric cancer cell lines. Conclusions: The data indicate that tivantinib could be a potential therapeutic agent for the treatment of gastric cancer with high c-MET expression or VEGFA amplification.


2009 ◽  
Vol 8 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Perry A. Christian ◽  
Jeffery A. Thorpe ◽  
Steven R. Schwarze

Sign in / Sign up

Export Citation Format

Share Document