Abstract 3358: SOCS3 deficiency in myeloid cells promotes tumor development: Involvement of STAT3 activation and myeloid-derived suppressor cells

Author(s):  
Hao Yu ◽  
Hongwei Qin ◽  
Etty (Tika) Benveniste
2015 ◽  
Vol 3 (7) ◽  
pp. 727-740 ◽  
Author(s):  
Hao Yu ◽  
Yudong Liu ◽  
Braden C. McFarland ◽  
Jessy S. Deshane ◽  
Douglas R. Hurst ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Clémence Marais ◽  
Caroline Claude ◽  
Nada Semaan ◽  
Ramy Charbel ◽  
Simon Barreault ◽  
...  

Abstract Background De-regulated host response to severe coronavirus disease 2019 (COVID-19), directly referring to the concept of sepsis-associated immunological dysregulation, seems to be a strong signature of severe COVID-19. Myeloid cells phenotyping is well recognized to diagnose critical illness-induced immunodepression in sepsis and has not been well characterized in COVID-19. The aim of this study is to review phenotypic characteristics of myeloid cells and evaluate their relations with the occurrence of secondary infection and mortality in patients with COVID-19 admitted in an intensive care unit. Methods Retrospective analysis of the circulating myeloid cells phenotypes of adult COVID-19 critically ill patients. Phenotyping circulating immune cells was performed by flow cytometry daily for routine analysis and twice weekly for lymphocytes and monocytes subpopulations analysis, as well as monocyte human leukocyte antigen (mHLA)-DR expression. Results Out of the 29 critically ill adult patients with severe COVID-19 analyzed, 12 (41.4%) developed secondary infection and six patients died during their stay. Monocyte HLA-DR kinetics was significantly different between patients developing secondary infection and those without, respectively, at day 5–7 and 8–10 following admission. The monocytes myeloid-derived suppressor cells to total monocytes ratio was associated with 28- and 60-day mortality. Those myeloid characteristics suggest three phenotypes: hyperactivated monocyte/macrophage is significantly associated with mortality, whereas persistent immunodepression is associated with secondary infection occurrence compared to transient immunodepression. Conclusions Myeloid phenotypes of critically ill COVID-19 patients may be associated with development of secondary infection, 28- and 60-day mortality.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Xiao Z Shen ◽  
Peng Shi ◽  
Jorge Giani ◽  
Ellen Bernstein ◽  
Kenneth E Bernstein

The immune system plays a critical role in the development of hypertension. The immune response consists of pro-inflammatory cells, but also immunosuppressive cells that reduce T cell function. An important category of natural immunosuppressive cell is myeloid-derived suppressor cells (MDSC). We now show that blood and spleen CD11b+ Gr1+ myeloid cells are elevated 2-fold in both angiotensin II and L-NAME induced hypertension. These increased myeloid cells are MDSC in that they elevate IL-4R expression and suppress T cell proliferation. When hypertensive mice were depleted of MDSC, using either anti-Gr1 antibody or gemcitabine, there was a 15 mmHg rise in blood pressure and aggravation of T cells activation with increased production of IFN-γ, TNFα and IL-17 in both spleen and kidney. In contrast, adoptive transfer of MDSC reduced blood pressure in angiotensin-II induced hypertension by 25 mmHg (see Figure). These data suggest a new concept, that the accumulation of MDSC is a compensatory response to the inflammation induced by hypertension. They also indicate that MDSC play an important role in regulating blood pressure.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2779-2779
Author(s):  
Cesarina Giallongo ◽  
Nunziatina Parrinello ◽  
Daniele Tibullo ◽  
Piera La Cava ◽  
Alessandra Cupri ◽  
...  

Abstract Abstract 2779 Background: Tumor cells are able to develop immune evasion mechanisms which induce a state of immune tolerance and inactivate tumor-specific T cells. In this context, in some solid tumors it has been demonstrated that a subpopulation of myeloid cells, defined as “myeloid-derived suppressor cells” (MDSCs), plays an important role in inducing T cell tolerance by production of arginase that depletes microenvironment of arginine, an essential aminoacid for T cell function. Since chronic myeloid leukemia (CML) patients have high levels of immature myeloid cells it is of interest to investigate if these cells have MDSCs phenotype and activity. Aim: The aim of this study was to analyze MDSCs and investigate their involvement in T-cell anergy of CML patients. Methods: MDSCs were analyzed in peripheral blood (PB) of 13 CML patients (at diagnosis and during therapy) and healthy donors (HD; n=20) by cytofluorimetric analysis (CD14+DR- for monocytic MDSCs and CD11b+CD33+CD14-DR- for granulocytic MDSCs). Arginase 1 expression was assessed in PB of HD and CML patient using real time PCR. Purification of granulocytes, monocytes and lymphocytes from PB was performed by a positive magnetic separation kit (EasySep, STEMCELL Technologies). Arginase activity was measured in granulocyte lysates using a colorimetric test after enzymatic activation and arginine hydrolysis. To evaluate the activation of CD3+ T lymphocytes after incubation with phytoemagglutinin, we analyzed at 24, 48, 72 h the following markers: CD69+, CD71+, DR+. Microvesicles were isolated from CML serum at diagnosis (n=5) by sequential ultracentrifugation. Results: CML patients showed high levels of monocytic and granulocytic MDSCs at diagnosis in comparison to HD (63±8 and 83±12,2% respectively in CML vs 4,9±2,1 and 55,8±5,3% respectively in HD; p<0.001) while after 3–6 months of tyrosine kinase inhibitors (TKIs) therapy MDSC levels returned to normal values. Either in PB and in the purified granulocytes subpopulation, arginase1 expression showed a 30 fold increase in CML at diagnosis (CML vs HD: p<0.01) and decreased after therapy. We also evaluated arginase enzymatic activity in granulocytes and we found it increased in CML patients (n=4) compared to HD (n=5) (p<0.05). CML as well as HD T lymphocytes showed a normal activation in vitro which was significantly lost when they was incubated with CML serum (n=4). In addition, an increase of monocytic MDSCs in vitro was observed after incubation of HD monocytes with CML serum (39±6%; p<0.01) or microvescicles (9,2±1,2%; p<0.05) compared to control serum. Conclusions: Granulocytic and monocytic MDSCs are increased in CML patients at diagnosis and decrease during TKIs treatment. Their levels also correlates with Arginase 1 expression and enzymatic activity in granulocytes. CML serum as well as CML microvesicles increase the percentage of HD monocytic MDSCs. Moreover, CML serum leads to anergy of T lymphocytes, probably by Arginase 1 secretion. Disclosures: Off Label Use: Eltrombopag is a thrombopoietin receptor agonist indicated for the treatment of thrombocytopenia in patients with chronic immune (idiopathic) thrombocytopenic purpura (ITP).


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3089-3089
Author(s):  
Gullu Topal Gorgun ◽  
Hiroto Ohguchi ◽  
Teru Hideshima ◽  
Yu-Tzu Tai ◽  
Noopur Raje ◽  
...  

Abstract The interaction of myeloma (MM) cells with bone marrow accessory cells induces genomic, epigenomic and functional changes which promote tumor development, progression, cell adhesion mediated-drug resistance (CAM-DR), and immune suppression. As in other cancers, bidirectional interaction between MM cells and surrounding cells regulates tumor development on the one hand, while transforming the BM microenvironment into a tumor promoting and immune suppressive milieu on the other. Recent developments in targeted therapies have indicated that generation of the most effective therapeutic strategies requires not only targeting tumor or stroma cells, but also methods to overcome blockade of anti-tumor immune responses. In addition to lymphoid immune suppressor cells such as regulatory T cells (Treg), distinct populations of myeloid cells such as myeloid derived suppressor cells (MDSC) can effectively block anti-tumor immune responses, thereby representing an important obstacle for immunotherapy. While MDSC are rare or absent in healthy individuals, increased numbers of MDSC have been identified in tumor sites and peripheral circulation. We have recently assessed the presence, frequency and functional characteristics of MDSC in patients with newly diagnosed or relapsed MM compared to MM patients with response and healthy donors. We have identified an increased distinct MDSC population (CD11b+CD14-HLA-DR-/lowCD33+CD15+) with tumor promoting and immune suppressive activity in both PB and BM of MM patients. Moreover, we have shown that lenalidomide (Len) and bortezomib (Bort), either alone or in combination, do not target MDSC in MM microenvironment. Moreover, Bort-induced cytotoxicity against MM cells is abrogated in the presence of MDSCs. In solid tumors, MDSC can be targeted by treatment with the multi-targeted receptor tyrosine kinase inhibitor Sunitinib (Sun), which is therefore an effective combination agent with immunotherapy. We therefore assessed whether MDSC-mediated MM growth and immune suppression in the BM and PB can be targeted by Sun, alone or in combination with Len. We first analysed effect of Sun, alone or in combination with Len, on the tumor promoting role of MDSC versus antigen presenting cells (APC) in MM. APC (CD14+HLA-DR+), mMDSC (monocytic CD11b+CD14+HLA-DR-/lowCD33+) and nMDSCs (neutrophilic CD11b+CD14-HLA-DR-/lowCD33+CD15+) were sorted by flow cytometry from MM-BM or PB and cultured with CFSE labeled MM cell lines (MM1.S, RPMI8226 and OPM1), in the absence or presence of Sun (0.5-3uM) and Len (1uM) alone or in combination. CFSE-flow analysis demonstrated that both mMDSC and nMDSC induced MM cell proliferation compared to MM cells alone (dividing cells 51%) or cultured with APC; and importantly, that Sun significantly inhibited MM cell proliferation even in the presence of MDSC (dividing cells 28%).Importantly, Sun combined with Len further enhanced MM cell cytotoxicity in the presence of MDSC. We further analysed effect of Sun on the BM stroma (BMSC)-induced MM cell growth/proliferation. Sun alone modestly inhibited BMSC-induced MM cell growth, and Len enhanced this effect. We next evaluated Sun effect on MDSC-mediated immune suppression in MM. APC, mMDSC, nMDSC were cultured with CFSE labeled autologous CD3 T cells stimulated with CD3/CD28 for 6 days, in the presence of Sun and Len alone or in combination. CFSE flow analysis demonstrated that Sun significantly reversed MDSC-induced suppression of immune effector cells (CD4 T cells, CD8 T cells and NKT cells). Finally, we determined the effect of Sun on MDSC-associated tumor promoting and immune suppressive cytokines. Flow cytometric intracellular cytokine profiling of MDSC in MM-BM and PB demonstrated that Sun increased IFNg expression, while decreasing TNFa and IL-6 expression in MDSC. Overall our data therefore show that MDSCs are increased in the MM microenvironment and play an important role in MM pathogenesis and immune suppression. They provide the rationale for clinical evaluation of Sunitinib to inhibit the tumor-promoting and immune-suppressive functions of MDSCs and improve patient outcome in MM. Disclosures: Hideshima: Acetylon: Consultancy. Tai:Onyx: Consultancy. Munshi:Celgene: Consultancy; Novartis: Consultancy; Millennium: Consultancy. Richardson:Novartis: Consultancy; Bristol-Myers Squibb: Consultancy; Johnson & Johnson: Consultancy; Celgene: Consultancy; Millenium: Consultancy. Anderson:acetylon: Equity Ownership; oncopep: Equity Ownership; sanofi aventis: Consultancy; gilead: Consultancy; onyx: Consultancy; celgene: Consultancy.


2013 ◽  
Vol 1 (S1) ◽  
Author(s):  
Jose Medina-Echeverz ◽  
Tamar Kapanadze ◽  
Chi Ma ◽  
Austin Duffy ◽  
Jaba Gamrekelashvili ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Sha Zhu ◽  
Yunuo Zhao ◽  
Yuxin Quan ◽  
Xuelei Ma

Myeloid-derived suppressor cells (MDSCs) are known to play an essential part in tumor progression under chronic stress settings through their manipulation of adaptive and innate immune systems. Previous researches mainly focus on MDSC's role in the chronic tumor immune environment. In addition, surgery can also serve as a form of acute stress within the patient's internal environment. Nevertheless, the part that MDSCs play in post-surgical tumor development has not gained enough attention yet. Although surgery is known to be an effective definite treatment for most localized solid tumors, there are still plenty of cancer patients who experience recurrence or metastasis after radical resection of the primary tumor. It is believed that surgery has the paradoxical capability to enhance tumor growth. Many possible mechanisms exist for explaining post-surgical metastasis. We hypothesize that surgical resection of the primary tumor can also facilitate the expansion of MDSCs and their pro-tumor role since these surgery-induced MDSCs can prepare the pre-metastatic niche (the “soil”) and at the same time interact with circulating tumor cells (the “seeds”). This vicious, reciprocal mechanism is a crucial point in the emergence of post-surgical metastasis. According to our hypothesis, MDSCs can be the precise target to prevent cancer patients from post-surgical recurrence and metastasis during the perioperative phase to break the wretched cycle and provide better long-term survival for these patients. Future studies are needed to validate this hypothesis.


2021 ◽  
Vol 11 (1) ◽  
pp. 187
Author(s):  
Nikoleta Bizymi ◽  
Helen A. Papadaki

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with immunomodulating properties, mainly acting by suppressing T-cell responses [...]


2020 ◽  
Author(s):  
Paul R. Dominguez Gutierrez ◽  
Elizabeth P. Kwenda ◽  
William Donelan ◽  
Padraic O’Malley ◽  
Paul L. Crispen ◽  
...  

AbstractIncreased presence of myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) in tumor tissue has been extensively reported. These cells represent a major constituent of tumor infiltrate and exhibit a distinct phenotype with immunosuppressive and tolerogenic functions. However, their role in the regulation of hyaluronan (HA) metabolism in the tumor microenvironment has not been established. Here we describe a novel function of tumor-associated myeloid cells related to the enhanced breakdown of extracellular HA in human bladder cancer tissue leading to accumulation of small HA fragments with MW <20 kDa. Increased fragmentation of extracellular HA and accumulation of low molecular weight HA (LMW-HA) in tumor tissue was associated with elevated production of multiple inflammatory cytokines, chemokines, and angiogenic factors. The fragmentation of HA by myeloid cells was mediated by the membrane-bound enzyme hyaluronidase 2 (Hyal2). The increased numbers of Hyal2+CD11b+ myeloid cells were detected in the tumor tissue as well as in the peripheral blood of bladder cancer patients. Co-expression of CD33 suggests that these cells belong to monocytic myeloid-derived suppressor cells. HA-degrading function of Hyal2-expressing MDSCs could be enhanced by exposure to tumor-conditioned medium, and IL-1β was identified as one of factors involved in the stimulation of Hyal2 activity. CD44-mediated signaling plays an important role in the regulation of HA-degrading activity of Hyal2-expressing myeloid cells, since engagement of CD44 receptor with specific monoclonal antibody triggered translocation of Hyal2 enzyme to the cellular surface and also stimulated secretion of IL-1β. Taken together, this work identifies the Hyal2-expressing tumor-associated myeloid cells, and links these cells to the accumulation of LMW-HA in the tumor microenvironment and cancer-related inflammation and angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document