Abstract 3579: Long non-coding RNA ADAMTS9-AS2 inhibits ovarian tumor growth via Annexin A1

Author(s):  
Cristian Rodriguez-Aguayo ◽  
Emine Bayraktar ◽  
Lingegowda S. Mangala ◽  
Cristina Ivan ◽  
Gabriel Lopez-Berestein ◽  
...  
2019 ◽  
Author(s):  
Cristian Rodriguez-Aguayo ◽  
Emine Bayraktar ◽  
Lingegowda S. Mangala ◽  
Cristina Ivan ◽  
Gabriel Lopez-Berestein ◽  
...  

2018 ◽  
Author(s):  
Xiao‑Jin Yang ◽  
Jing‑Jing Zhao ◽  
Wei‑Jun Chen ◽  
Gen‑Gen Zhang ◽  
Wei Wang ◽  
...  

2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yi Cheng ◽  
Chunliu Huang ◽  
Yongxuan Mo ◽  
Weiwu Wu ◽  
Lu Liang

2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also done to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, invasion in vitro, and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. For the mechanism part, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2020 ◽  
Vol 67 ◽  
pp. 109502 ◽  
Author(s):  
Jiayan Lian ◽  
Haibo Zhang ◽  
Fangqiang Wei ◽  
Qiang Li ◽  
Yanwei Lu ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Changru Fan ◽  
Qiulan Yuan ◽  
Guifeng Liu ◽  
Yuliang Zhang ◽  
Maojun Yan ◽  
...  

Abstract Background Colorectal cancer (CRC) is one of the most general malignant tumors. Accumulating evidence implied that long non-coding RNA Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) participated in the tumorigenesis of CRC. However, the effect of MALAT1 in drug-resistance needed to be further illustrated. Methods Levels of MALAT1, microRNA (miR)-324-3p, and a disintegrin and metalloprotease metallopeptidase domain 17 (ADAM17) were detected using quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Cell Counting Kit 8 (CCK-8) was used to assess the half maximal inhibitory concentration (IC50) of oxaliplatin (Ox). Meanwhile, cell proliferation, migration and apoptosis were detected by CCK-8, transwell assay, and flow cytometry, respectively. The interaction between miR-324-3p and MALAT1 or ADAM17 was clarified by dual-luciferase reporter assay. Also, the effect of MALAT1 on tumor growth was detected in xenograft tumor mice treated with Ox. Results Significant up regulation of MALAT1 and ADAM17, and decrease of miR-324-3p were observed in Ox-resistant CRC tissues and cells. MALAT1 deficiency enhanced the sensitivity of Ox-resistant CRC cells response to Ox, while miR-324-3p repression or ADAM17 acceleration could overturn this effect. Moreover, MALAT1 silencing repressed tumor growth in Ox-treated nude mice. Mechanically, MALAT1 exerted promotion effect on the resistance response to Ox via miR-324-3p/ADAM17 axis in Ox-resistant CRC cells. Conclusion MALAT1 modulated the sensitivity of Ox through ADAM17 in Ox-resistant CRC cells by sponging miR-324-3p, thus MALAT1 might serve as a novel insight for the therapy of CRC.


Sign in / Sign up

Export Citation Format

Share Document