Abstract 1856: Donor and antibody diversity in NK cell-mediated antibody dependent cellular cytotoxicity (ADCC) detected using an optimized multiplexed assay and advanced flow cytometry

Author(s):  
Julie Lovchik ◽  
Mark Carter
Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1833-1833
Author(s):  
Takeshi Harada ◽  
Shuji Ozaki ◽  
Asuka Oda ◽  
Hiroe Amou ◽  
Shiro Fujii ◽  
...  

Abstract Abstract 1833 Multiple myeloma (MM) is a B-cell malignancy characterized by the accumulation of neoplastic plasma cells in the bone marrow. During the last decade, treatment of MM has been improved by incorporating bortezomib, thalidomide, and lenalidomide (LEN) into conventional cytotoxic and transplantation regimens in newly diagnosed and relapsed/refractory MM patients. However, MM still remains incurable despite the implementation of these new treatment options, so more efficacious therapies are needed to further improve the prognosis of MM. Monoclonal antibody (mAb)-based immunotherapy has recently become an alternative strategy for treatment of cancers. Our previous studies have shown that HM1.24 (CD317) is selectively expressed on terminally differentiated normal and neoplastic plasma cells and, moreover, expressed on the side population of MM cells that represents MM cancer stem cells. We have previously generated a humanized mAb (AHM) specific to HM1.24 for the treatment of MM. AHM carries an Fc region derived from human IgG1-k and exhibits the ability to induce antibody-dependent cellular cytotoxicity (ADCC) against human MM cells in the presence of human effector cells. To improve the efficacy of AHM, we have developed a defucosylated mAb (YB-AHM) with a higher affinity to Fc gamma RIII. LEN is a structural analog of thalidomide with more potent immunomodulatory activities. Several studies have shown that LEN activates NK cell function and enhances NK cell-mediated lysis of both MM cell lines and patient MM cells in vitro. Here, we evaluated the efficacy of combination therapy of YB-AHM and LEN. First, we investigated whether LEN stimulates the expression of HM1.24 on MM cells. LEN alone did not affect HM1.24 expression, but in the presence of peripheral blood mononuclear cells (PBMCs) LEN augmented the expression of HM1.24 in MM cell lines and primary MM cells. In PBMCs, expression levels of CD56 increased after stimulation with LEN. These results suggest that LEN might augment the ADCC activity by enhancing HM1.24 antigen and NK activity. Next, we evaluated ADCC activity of YB-AHM against RPMI 8226 cells by using flow cytometric PKH-26 assay. When we used PBMCs from healthy donors (n=5) as effectors, ADCC activity of YB-AHM was increased in an E:T ratio-dependent manner. Importantly, YB-AHM induced significantly higher ADCC activity compared with AHM (24±6% vs 11±7%, p<0.05; mAb, 100 ng/mL; E:T ratio, 10). Treatment of PBMCs with LEN (3 micro M for 2 days) slightly enhanced ADCC activity of AHM (12±5%) and YB-AHM (30±6%). In PBMCs from MM patients (n=11), YB-AHM induced ADCC activity (36±15%) that was further enhanced by treatment with LEN (45±15%). To evaluate the efficacy of this combination therapy in a more physiological manner, we assessed the efficacy of YB-AHM using total bone marrow mononuclear cells (BMMCs) from MM patients that contained both MM cells and effector cells. BMMCs were stimulated with LEN (3 micro M) for 2 days and further incubated with YB-AHM for 24 hours. Cytotoxicity was evaluated by the number of CD38-positive MM cells in total BMMCs using flow cytometry. YB-AHM plus LEN significantly reduced the number of MM cells (10.3%) compared to YB-AHM alone (21.6%) in patient No.1. Finally, RPMI 8226 cells were co-cultured with YB-AHM and LEN-stimulated PBMCs from MM patients, and MM colony formation was examined using methylcellulose assay. Colony formation of RPMI 8226 was significantly suppressed by YB-AHM and LEN-stimulated PBMCs compared to control (14±8 vs 49±10 colonies, p<0.01), suggesting that this combination therapy can target MM cancer stem cells. Thus, these results indicate that combining defucosylated HM1.24 mAb with immunomodulatory drugs provides a novel therapeutic strategy in patients with MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1537-1537 ◽  
Author(s):  
Julia Hilpert ◽  
Katrin Baltz-Ghahremanpour ◽  
Benjamin J Schmiedel ◽  
Lothar Kanz ◽  
Gundram Jung ◽  
...  

Abstract Abstract 1537 The capability of anti-tumor antibodies to recruit Fc-receptor (FcR) bearing effector cells like NK cells, a feature considered critical for therapeutic success, can be markedly improved by modifications of the human IgG1 part. At present, Fc-engineered antibodies targeting leukemia cells are yet not available. The various ligands of the NK cell-activating immunoreceptor NKG2D (NKG2DL) are generally absent on healthy cells but upregulated on malignant cells of various origins including leukemia. We aimed to take advantage of the tumor-restricted expression of NKG2DL by using them as target-antigens for Fc-optimized NKG2D-IgG1 fusion proteins targeting leukemia cells for antibody-dependent cellular cytotoxicity (ADCC) and IFN-g production of NK cells. NKG2D-IgG1 fusion proteins with distinct modifications in their Fc portion were generated as previously described (Lazar 2006; Armour 1999). Compared to wildtype NKG2D-Fc (NKG2D-Fc-WT), the mutants (S239D/I332E and E233P/L234V/L235A/DG236/A327G/A330S) displayed highly enhanced (NKG2D-Fc-ADCC) and abrogated (NKG2D-Fc-KO) affinity to the NK cell FcgRIIIa receptor but comparable binding to NKG2DL-expressing target cells. Functional analyses with allogenic NK cells and leukemia cell lines as well as primary leukemic cells of AML and CLL patients revealed that NKG2D-Fc-KO significantly (p<0.05, Mann-Whitney U test) reduced NK cytotoxicity and IFN-g production (about 20% and 30% reduction, respectively), which can be attributed to blockade of NKG2DL-mediated activating signals. Treatment with NKG2D-Fc-WT significantly (p<0.05, Mann-Whitney U test) enhanced NK reactivity (about 20% and 100% increase in cytotoxicity and cytokine production, respectively). The effects observed upon treatment with NKG2D-Fc-ADCC by far exceeded that of NKG2D-Fc-WT resulting in at least doubled NK ADCC and IFN-g production compared to NKG2D-Fc-WT. When applied in combination with Rituximab in analyses with CLL cells, a clear additive effect resulting in a more than four-fold increase of ADCC and FcgRIIIa-induced IFN-g production was observed. The NKG2D-Fc fusion proteins did not induce NK reactivity against healthy blood cells, which is in line with the tumor-restricted expression of NKG2DL. Of note, treatment with NKG2D-Fc-ADCC also significantly (p<0.05, Mann-Whitney U test) enhanced reactivity (up to 70% increase) of NK cells against NKG2DL-positive AML and CLL cells among patient PBMC in an autologous setting. Together, our results demonstrate that Fc-engineered NKG2D-Fc-ADCC fusion proteins can effectively target NKG2DL-expressing leukemia cells for NK anti-tumor reactivity. In line with the hierarchically organized potential of the various activating receptors governing NK reactivity and due to their highly increased affinity to the FcgRIIIa receptor, NKG2D-Fc-ADCC potently enhances NK anti-leukemia reactivity despite the inevitable reduction of activating signals upon binding to NKG2DL. Due to the tumor-restricted expression of NKG2DL, Fc-modified NKG2D-Ig may thus constitute an attractive means for immunotherapy of leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 121 (23) ◽  
pp. 4694-4702 ◽  
Author(s):  
Dominika Rudnicka ◽  
Anna Oszmiana ◽  
Donna K. Finch ◽  
Ian Strickland ◽  
Darren J. Schofield ◽  
...  

Key Points Rituximab causes a polarization of B cells, involving a reorganization of CD20, intercellular adhesion molecule 1, and moesin, and orientation of the microtubule organizing center. The polarization of B cells induced by rituximab augments its therapeutic role in triggering ADCC by effector NK cells.


Blood ◽  
2009 ◽  
Vol 114 (19) ◽  
pp. 4117-4127 ◽  
Author(s):  
Stephanie M. Wood ◽  
Marie Meeths ◽  
Samuel C. C. Chiang ◽  
Anne Grete Bechensteen ◽  
Jaap J. Boelens ◽  
...  

Abstract The autosomal recessive immunodeficiencies Griscelli syndrome type 2 (GS2) and familial hemophagocytic lymphohistiocytosis type 3 (FHL3) are associated with loss-of-function mutations in RAB27A (encoding Rab27a) and UNC13D (encoding Munc13-4). Munc13-4 deficiency abrogates NK-cell release of perforin-containing lytic granules induced by signals for natural and antibody-dependent cellular cytotoxicity. We demonstrate here that these signals fail to induce degranulation in resting NK cells from Rab27a-deficient patients. In resting NK cells from healthy subjects, endogenous Rab27a and Munc13-4 do not colocalize extensively with perforin. However, phorbol 12-myristate 13-acetate and ionomycin stimulation or conjugation to susceptible target cells induced myosin-dependent colocalization of Rab27a and Munc13-4 with perforin. Unexpectedly, individual engagement of receptors leukocyte functional antigen-1, NKG2D, or 2B4 induced colocalization of Rab27a, but not Munc13-4, with perforin. Conversely, engagement of antibody-dependent cellular cytotoxicity receptor CD16 induced colocalization of Munc13-4, but not Rab27a, with perforin. Furthermore, colocalization of Munc13-4 with perforin was Rab27a-dependent. In conclusion, Rab27a or Munc13-4 recruitment to lytic granules is preferentially regulated by different receptor signals, demonstrating that individual target cell ligands regulate discrete molecular events for lytic granule maturation. The data suggest Rab27a facilitates degranulation at an early step yet highlight a reciprocal relationship between Munc13-4 and Rab27a for degranulation.


2017 ◽  
Vol 8 ◽  
Author(s):  
Nicole F. Bernard ◽  
Zahra Kiani ◽  
Alexandra Tremblay-McLean ◽  
Sanket A. Kant ◽  
Christopher E. Leeks ◽  
...  

Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1456-1463 ◽  
Author(s):  
Siao-Yi Wang ◽  
Emilian Racila ◽  
Ronald P. Taylor ◽  
George J. Weiner

Abstract Antibody-dependent cellular cytotoxicity (ADCC) and complement fixation both appear to play a role in mediating antitumor effects of monoclonal antibodies (mAbs), including rituximab. We evaluated the relationship between rituximab-induced complement fixation, natural killer (NK)–cell activation, and NK cell–mediated ADCC. Down-modulation of NK- cell CD16 and NK-cell activation induced by rituximab-coated target cells was blocked by human serum but not heat-inactivated serum. This inhibition was also observed in the absence of viable target cells. C1q and C3 in the serum were required for these inhibitory effects, while C5 was not. An antibody that stabilizes C3b on the target cell surface enhanced the inhibition of NK-cell activation induced by rituximab-coated target cells. Binding of NK cells to rituximab-coated plates through CD16 was inhibited by the fixation of complement. C5-depleted serum blocked NK cell–mediated ADCC. These data suggest that C3b deposition induced by rituximab-coated target cells inhibits the interaction between the rituximab Fc and NK-cell CD16, thereby limiting the ability of rituximab-coated target cells to induce NK activation and ADCC. Further studies are needed to define in more detail the impact of complement fixation on ADCC, and whether mAbs that fail to fix complement will be more effective at mediating ADCC.


PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0145249 ◽  
Author(s):  
Sanne Skov Jensen ◽  
Anders Fomsgaard ◽  
Marie Borggren ◽  
Jeanette Linnea Tingstedt ◽  
Jan Gerstoft ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document