Abstract P3-06-19: Gene expression profiles accompanying phenotypic changes during non-malignant breast epithelial cells acini formation to explain MRI phenotypes

Author(s):  
Marcia V Fournier ◽  
Alan Derr ◽  
Alex Margulis ◽  
Kevin Reid ◽  
Sara Brumbaugh ◽  
...  
2009 ◽  
Vol 125 (12) ◽  
pp. 2767-2777 ◽  
Author(s):  
Patricia Bortman Rozenchan ◽  
Dirce Maria Carraro ◽  
Helena Brentani ◽  
Louise Danielle de Carvalho Mota ◽  
Elen Pereira Bastos ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e41355 ◽  
Author(s):  
Bin Wang ◽  
Linsey E. Lindley ◽  
Virneliz Fernandez-Vega ◽  
Megan E. Rieger ◽  
Andrew H. Sims ◽  
...  

2003 ◽  
Vol 204 (1-2) ◽  
pp. 155-168 ◽  
Author(s):  
Christophe Cataisson ◽  
Johnthan Gordon ◽  
Mickael Roussière ◽  
Arman Abdalkhani ◽  
Ralph Lindemannn ◽  
...  

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Yun Jung Bae ◽  
Youn-Kyung Bak ◽  
Taesun Park ◽  
Myung-Sook Choi ◽  
Jeongseon Kim ◽  
...  

Author(s):  
Ana M Mesa ◽  
Jiude Mao ◽  
Theresa I Medrano ◽  
Nathan J Bivens ◽  
Alexander Jurkevich ◽  
...  

Abstract Histone proteins undergo various modifications that alter chromatin structure, including addition of methyl groups. Enhancer of homolog 2 (EZH2), is a histone methyltransferase that methylates lysine residue 27, and thereby, suppresses gene expression. EZH2 plays integral role in the uterus and other reproductive organs. We have previously shown that conditional deletion of uterine EZH2 results in increased proliferation of luminal and glandular epithelial cells, and RNAseq analyses reveal several uterine transcriptomic changes in Ezh2 conditional (c) knockout (KO) mice that can affect estrogen signaling pathways. To pinpoint the origin of such gene expression changes, we used the recently developed spatial transcriptomics (ST) method with the hypotheses that Ezh2cKO mice would predominantly demonstrate changes in epithelial cells and/or ablation of this gene would disrupt normal epithelial/stromal gene expression patterns. Uteri were collected from ovariectomized adult WT and Ezh2cKO mice and analyzed by ST. Asb4, Cxcl14, Dio2, and Igfbp5 were increased, Sult1d1, Mt3, and Lcn2 were reduced in Ezh2cKO uterine epithelium vs. WT epithelium. For Ezh2cKO uterine stroma, differentially expressed key hub genes included Cald1, Fbln1, Myh11, Acta2, and Tagln. Conditional loss of uterine Ezh2 also appears to shift the balance of gene expression profiles in epithelial vs. stromal tissue toward uterine epithelial cell and gland development and proliferation, consistent with uterine gland hyperplasia in these mice. Current findings provide further insight into how EZH2 may selectively affect uterine epithelial and stromal compartments. Additionally, these transcriptome data might provide the mechanistic understanding and valuable biomarkers for human endometrial disorders with epigenetic underpinnings.


Sign in / Sign up

Export Citation Format

Share Document