Abstract P1-05-23: Utilities and challenges of RNA-Seq based expression and variant calling in a clinical setting

Author(s):  
B Young ◽  
A Mark ◽  
T Meissner ◽  
A Amallraja ◽  
A Andrews ◽  
...  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gavin W. Wilson ◽  
Mathieu Derouet ◽  
Gail E. Darling ◽  
Jonathan C. Yeung

AbstractIdentifying single nucleotide variants has become common practice for droplet-based single-cell RNA-seq experiments; however, presently, a pipeline does not exist to maximize variant calling accuracy. Furthermore, molecular duplicates generated in these experiments have not been utilized to optimally detect variant co-expression. Herein, we introduce scSNV designed from the ground up to “collapse” molecular duplicates and accurately identify variants and their co-expression. We demonstrate that scSNV is fast, with a reduced false-positive variant call rate, and enables the co-detection of genetic variants and A>G RNA edits across twenty-two samples.


2020 ◽  
Author(s):  
Noel-Marie Plonski ◽  
Emily Johnson ◽  
Madeline Frederick ◽  
Heather Mercer ◽  
Gail Fraizer ◽  
...  

AbstractBackgroundAs the number of RNA-seq datasets that become available to explore transcriptome diversity increases, so does the need for easy-to-use comprehensive computational workflows. Many available tools facilitate analyses of one of the two major mechanisms of transcriptome diversity, namely, differential expression of isoforms due to alternative splicing, while the second major mechanism - RNA editing due to post-transcriptional changes of individual nucleotides – remains under-appreciated. Both these mechanisms play an essential role in physiological and diseases processes, including cancer and neurological disorders. However, elucidation of RNA editing events at transcriptome-wide level requires increasingly complex computational tools, in turn resulting in a steep entrance barrier for labs who are interested in high-throughput variant calling applications on a large scale but lack the manpower and/or computational expertise.ResultsHere we present an easy-to-use, fully automated, computational pipeline (Automated Isoform Diversity Detector, AIDD) that contains open source tools for various tasks needed to map transcriptome diversity, including RNA editing events. To facilitate reproducibility and avoid system dependencies, the pipeline is contained within a pre-configured VirtualBox environment. The analytical tasks and format conversions are accomplished via a set of automated scripts that enable the user to go from a set of raw data, such as fastq files, to publication-ready results and figures in one step. A publicly available dataset of Zika virus-infected neural progenitor cells is used to illustrate AIDD’s capabilities.ConclusionsAIDD pipeline offers a user-friendly interface for comprehensive and reproducible RNA-seq analyses. Among unique features of AIDD are its ability to infer RNA editing patterns, including ADAR editing, and inclusion of Guttman scale patterns for time series analysis of such editing landscapes. AIDD-based results show importance of diversity of ADAR isoforms, key RNA editing enzymes linked with the innate immune system and viral infections. These findings offer insights into the potential role of ADAR editing dysregulation in the disease mechanisms, including those of congenital Zika syndrome. Because of its automated all-inclusive features, AIDD pipeline enables even a novice user to easily explore common mechanisms of transcriptome diversity, including RNA editing landscapes.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Javad Behroozi ◽  
Shirin Shahbazi ◽  
Mohammad Reza Bakhtiarizadeh ◽  
Habibollah Mahmoodzadeh

RNA editing is a posttranscriptional nucleotide modification in humans. Of the various types of RNA editing, the adenosine to inosine substitution is the most widespread in higher eukaryotes, which is mediated by the ADAR family enzymes. Inosine is recognized by the biological machinery as guanosine; therefore, editing could have substantial functional effects throughout the genome. RNA editing could contribute to cancer either by exclusive editing of tumor suppressor/promoting genes or by introducing transcriptomic diversity to promote cancer progression. Here, we provided a comprehensive overview of the RNA editing sites in gastric adenocarcinoma and highlighted some of their possible contributions to gastric cancer. RNA-seq data corresponding to 8 gastric adenocarcinoma and their paired nontumor counterparts were retrieved from the GEO database. After preprocessing and variant calling steps, a stringent filtering pipeline was employed to distinguish potential RNA editing sites from SNPs. The identified potential editing sites were annotated and compared with those in the DARNED database. Totally, 12362 high-confidence adenosine to inosine RNA editing sites were detected across all samples. Of these, 12105 and 257 were known and novel editing events, respectively. These editing sites were unevenly distributed across genomic regions, and nearly half of them were located in 3 ′ UTR. Our results revealed that 4868 editing sites were common in both normal and cancer tissues. From the remaining sites, 3985 and 3509 were exclusive to normal and cancer tissues, respectively. Further analysis revealed a significant number of differentially edited events among these sites, which were located in protein coding genes and microRNAs. Given the distinct pattern of RNA editing in gastric adenocarcinoma and adjacent normal tissue, edited sites have the potential to serve as the diagnostic biomarkers and therapeutic targets in gastric cancer.


Gene ◽  
2018 ◽  
Vol 641 ◽  
pp. 367-375 ◽  
Author(s):  
Maria Oczkowicz ◽  
Tomasz Szmatoła ◽  
Katarzyna Piórkowska ◽  
Katarzyna Ropka-Molik

Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Zaid Al-Ars ◽  
Saiyi Wang ◽  
Hamid Mushtaq

The rapid proliferation of low-cost RNA-seq data has resulted in a growing interest in RNA analysis techniques for various applications, ranging from identifying genotype–phenotype relationships to validating discoveries of other analysis results. However, many practical applications in this field are limited by the available computational resources and associated long computing time needed to perform the analysis. GATK has a popular best practices pipeline specifically designed for variant calling RNA-seq analysis. Some tools in this pipeline are not optimized to scale the analysis to multiple processors or compute nodes efficiently, thereby limiting their ability to process large datasets. In this paper, we present SparkRA, an Apache Spark based pipeline to efficiently scale up the GATK RNA-seq variant calling pipeline on multiple cores in one node or in a large cluster. On a single node with 20 hyper-threaded cores, the original pipeline runs for more than 5 h to process a dataset of 32 GB. In contrast, SparkRA is able to reduce the overall computation time of the pipeline on the same single node by about 4×, reducing the computation time down to 1.3 h. On a cluster with 16 nodes (each with eight single-threaded cores), SparkRA is able to further reduce this computation time by 7.7× compared to a single node. Compared to other scalable state-of-the-art solutions, SparkRA is 1.2× faster while achieving the same accuracy of the results.


2018 ◽  
Author(s):  
Eric Olivier Audemard ◽  
Patrick Gendron ◽  
Vincent-Philippe Lavallée ◽  
Josée Hébert ◽  
Guy Sauvageau ◽  
...  

AbstractMutations identified in each Acute Myeloid Leukemia (AML) patients are useful for prognosis and to select targeted therapies. Detection of such mutations by the analysis of Next-Generation Sequencing (NGS) data requires a computationally intensive read mapping step and application of several variant calling methods. Targeted mutation identification drastically shifts the usual tradeoff between accuracy and performance by concentrating all computations over a small portion of sequence space. Here, we present km, an efficient approach leveraging k-mer decomposition of reads to identify targeted mutations. Our approach is versatile, as it can detect single-base mutations, several types of insertions and deletions, as well as fusions. We used two independent AML cohorts (The Cancer Genome Atlas and Leucegene), to show that mutation detection bykmis fast, accurate and mainly limited by sequencing depth. Therefore,kmallows to establish fast diagnostics from NGS data, and could be suitable for clinical applications.


2019 ◽  
Author(s):  
Delia Tomoiaga ◽  
Vanessa Aguiar-Pulido ◽  
Shristi Shrestha ◽  
Paul Feinstein ◽  
Shawn E. Levy ◽  
...  

AbstractThe human sperm is one of the smallest cells in the body, but also one of the most important, as it serves as the entire paternal genetic contribution to a child. This is especially relevant for diseases such as Autism Spectrum Disorders (ASD), which have been correlated with advance paternal age. Historically, most studies of sperm have focused on the assessment of a bulk sperm, wherein millions of individual sperm are present and only high-frequency variants can be detected. Using 10X Chromium single cell sequencing technology, we have assessed the RNA from >65,000 single sperm cells across 6 donors (scsperm-RNA-seq), including two of whom have autistic children and four that do not. Using multiple RNA-seq methods for differential expression and variant analysis, we found clusters of sperm mutations in each donor that are indicative of the sperm being produced by different stem cell pools. Moreover, by comparing the two groups, we have found expression changes that can separate out the two sets of donors. Finally, through our novel variant calling from single-cell RNA-seq methods, we have shown that we can detect mutation rates in sperm from ASD donors that is distinct from the controls, highlighting this method as a new means to characterize ASD risk.


2018 ◽  
Author(s):  
Laurence Tessier ◽  
Olivier Côté ◽  
Dorothee Bienzle

Background. Severe equine asthma is a chronic inflammatory disease of the lung in horses similar to low-Th2 late-onset asthma in humans. This study aimed to determine the utility of RNA-Seq to call gene sequence variants, and to identify sequence variants or potential relevance to the pathogenesis of asthma. Methods. RNA-Seq data were generated from endobronchial biopsies collected from 6 asthmatic and 7 non-asthmatic horses before and after challenge (26 samples total). Sequences were aligned to the equine genome with Spliced Transcripts Alignment to Reference software. Read preparation for sequence variant calling was performed with Picard tools and Genome Analysis Toolkit (GATK). Sequence variants were called and filtered using GATK and Ensembl Variant Effect Predictor (VEP) tools, and two RNA-Seq predicted sequence variants were investigated with both PCR and Sanger sequencing. Supplementary analysis of novel sequence variant selection with VEP was based on a score of <0.01 predicted with Sorting Intolerant From Tolerant (SIFT) software, missense nature, location within the protein coding sequence and presence in all asthmatic individuals. For select variants, effect on protein function was assessed with Polymorphism Phenotyping (PolyPhen) 2 and Screening for Non-Acceptable Polymorphism (SNAP) 2 software. Sequences were aligned and 3D protein structures predicted with Geneious software. Difference in allele frequency between the groups was assessed using a Pearson's Chi-squared test with Yates' continuity correction, and difference in genotype frequency was calculated using the Fisher's exact test for count data. Results. RNA-Seq variant calling and filtering correctly identified substitution variants in PACRG and RTTN. Sanger sequencing confirmed that the PACRG substitution was appropriately identified in all 26 samples while the RTTN substitution was identified correctly in 24 of 26 samples. These variants of uncertain significance had substitutions that were predicted to result in loss of function and to be non-neutral. Amino acid substitutions projected no change of hydrophobicity and isoelectric point in PACRG, and a change in both for RTTN. For PACRG, no difference in allele frequency between the two groups was detected but a higher proportion of asthmatic horses had the altered RTTN allele compared to non-asthmatic animals. Discussion. RNA-Seq was sensitive and specific for calling gene sequence variants in this disease model. Even moderate coverage (<10-20 cpm) yielded correct identification in 92% of samples, suggesting RNA-Seq may be suitable to detect sequence variants in low coverage samples. The impact of amino acid alterations in PACRG and RTTN proteins, and possible association of the sequence variants with asthma, is of uncertain significance, but their role in ciliary function may be of future interest.


Sign in / Sign up

Export Citation Format

Share Document