Abstract 3974: In vivo CRISPR-Cas9 library screen for liver cancer therapeutic targets essential for T cell killing

Author(s):  
Haixin Zhao ◽  
Chenlu Geng ◽  
Wenrong Zhou ◽  
Zhengang Peng ◽  
Qunsheng Ji ◽  
...  
2019 ◽  
Author(s):  
Haixin Zhao ◽  
Chenlu Geng ◽  
Wenrong Zhou ◽  
Zhengang Peng ◽  
Qunsheng Ji ◽  
...  

BIO-PROTOCOL ◽  
2016 ◽  
Vol 6 (12) ◽  
Author(s):  
Nada Chaoul ◽  
Catherine Fayolle ◽  
Claude Leclerc
Keyword(s):  
T Cell ◽  

2020 ◽  
Vol 15 (7) ◽  
pp. 1934578X2093522
Author(s):  
Yanchu Li ◽  
Lu Chen ◽  
Rong Pu ◽  
Lu Zhou ◽  
Xufeng Zhou ◽  
...  

Herbal medicine can present an alternative way of treating liver cancer. Here, we explored a matrine- and sophoridine-containing herbal compound medicine (AH-05) extracted from Adenophora capillaris, Sophora flavescens, Astragalus, and other plants. H22 and HepG2 cell models, as well as an H22 xenograft model, were established. Cell proliferation and apoptosis were measured in vitro, and tumor volume and weight were observed in vivo. The activation of AKT/mTOR and nuclear factor-κB (NF-κB) pathways in tumor cells and the polarization of CD4/CD8 T cells in the spleen were tested. To assess safety, hematological toxicity and pathology of the liver, kidney, spleen, and intestine were evaluated. AH-05 inhibited cell viability in a dose- and time-dependent manner. In vivo, tumor volume and weight were reduced, and the activation of NF-κB p50, NF-κB p65, AKT, p-AKT Ser473, and mTOR was suppressed. In addition, AH-05 promoted CD4+ T cell polarization in the spleen. With regard to safety, slight intestinal mucosa edema was observed, but no severe pathological or hematological toxicity was detected. AH-05 exhibited its therapeutic effects against liver cancer by regulating the AKT/mTOR and NF-κB signaling pathways, and the immune environment, by promoting CD4+ T cell polarization in the spleen. Thus, AH-05 represents a potential supplementary herbal compound medicine for liver cancer.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2762-2762
Author(s):  
Diane L Rossi ◽  
Edmund A Rossi ◽  
Thomas M Cardillo ◽  
David M Goldenberg ◽  
Chien-Hsing Chang

Abstract Abstract 2762 Background: The use of bispecific antibodies (bsAbs) to redirect effector T cells for the targeted killing of tumor cells is a very active area of antibody engineering. Various formats of such agents made recombinantly have shown considerable promise both pre-clinically and clinically. For example, one design termed Bispecific T-cell engager (BiTE) employs a single polypeptide containing 2 antigen-binding specificities (each contributed by a cognate VH and VL) linked in tandem via a flexible linker, and another design termed DART (Dual-Affinity Re-Targeting) utilizes a disulfide-stabilized diabody. Both BiTE and DART, however, exhibit fast blood clearance due to their small size (∼55 kDa). Herein, we describe, for the first time, the generation of a novel T-cell redirecting bsAb, (19)-3s, comprising an anti-CD3 scFv covalently conjugated to a stabilized anti-CD19 F(ab)2. The potential advantages of (19)-3s include bivalent binding to tumor cells, a larger size (∼130 kDa) to preclude rapid renal clearance, and potent T-cell mediated cytotoxicity. Methods and Results: The Dock-and-Lock (DNL) method was used to generate (19)-3s by combining a stabilized anti-CD19 F(ab)2 with an anti-CD3-scFv, resulting in a homogeneous covalent structure of the designed composition, as shown by SE-HPLC, ELISA, SDS-PAGE, and immunoblot analyses. Functionally, (19)-3s induced synapse formation between effector and target cells using freshly isolated human T cells mixed with Daudi Burkitt lymphoma cells. Using an E:T ratio of 2.5:1 and 1 μg/mL of (19)-3s, the cell mixture was stained with anti-CD20-APC (for Daudi) and anti-CD7-FITC (for T cells), and cobinding was measured by flow cytometry as the % of CD20+/CD7+ events. After treatment with (19)-3s, 45.5% of events were found to be CD20/CD7 dual-positive, indicating synapsed Daudi and T cells, compared with 2% measured for untreated cells. Gating of the Daudi cell population showed that >90% of Daudi cells were associated with T cells. To access the targeted T-cell killing of Daudi, isolated T cells and Daudi were mixed at an E:T ratio of 12.5:1 and treated with serial dilutions of (19)-3s. After 18-h incubation at 37°C, cytotoxicity was measured using a LDH-release assay. Potent (19)-3s-mediated T-cell killing of Daudi cells was observed at <1 pM, with maximal activity at 10 pM. Similar results were seen with both Ramos and Raji NHL cell lines. In vivo studies to determine Pk and efficacy are underway. Based on DNL constructs of similar design, we expect (19)-3s to have an elimination rate longer than that of MT103, a BiTE comprising scFvs derived from anti-CD19 and anti-CD3, thus perhaps avoiding continuous infusions with this new construct. Conclusions: (19)-3s can bind T cells and NHL cells simultaneously and induce T-cell-mediated killing at pM concentrations in an ex vivo setting. The modular nature of the DNL method will allow the rapid production of a large number of related conjugates for redirected T-cell killing of various malignancies, without the need for additional recombinant engineering and protein production. We are currently evaluating the in vivo activity of (19)-3s, as a prototype, to determine if this novel bsAb format offers additional advantages. Disclosures: Rossi: Immunomedics, Inc.: Employment. Rossi:Immunomedics, Inc.: Employment; IBC Pharmaceuticals Inc.: Employment. Cardillo:Immunomedics, Inc: Employment. Goldenberg:Immunomedics: Employment, Equity Ownership. Chang:Immunomedics, Inc.: Employment.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4169-4169 ◽  
Author(s):  
Yumin CUI ◽  
Zhihua Huang ◽  
Xinfeng Zhang ◽  
Wuzhong Shen ◽  
Hanyang Chen ◽  
...  

Abstract Immunotherapies targeting B-lineage-specific surface marker CD19 had demonstrated promising clinical results. Two CD19 CAR-T therapies (Kymriah® and Yescarta®) have been approved by FDA to treat patients with B cell malignancies, however, the complicated manufacturing process and low throughput limit its accessibility to more patients, especially in developing countries. The first CD3-activating bi-specific antibody targeting CD19, Blincyto, or CD19 BiTE, was approved to treat relapsed and refractory acute lymphoblastic lymphoma (r/r ALL). The relatively short half-life of Blincyto requires continuous IV infusion for weeks to maintain a steady levels of drug exposure, not to mention the high risk of developing severe cytokine release syndrome in patients. We had established a bispecific antibody platform ITabTM (immunotherapy antibody) for the generation of CD3-activating bi-specific antibodies that could potentially overcome the shortcomings of BiTEs. A CH1 domain was introduced into the ITabTM construct design with the intent to increase the molecular weight thus led to extend the serum half-life of the bispecific antibody. A novel CD3-activating and monkey cross-reactive antibody was generated with a less degree of T cell activation and cytokine release compared to BiTEs. A bi-valent binding to tumor associated antigen (TAA) format was established to target tumor cells and/or stem cells expressing very low levels of TAA. We report here the biological properties of the mono-valent/bi-valent binding of CD19 bi-specific antibody with CD3-activating activity (A-319/A-329). A series of studies were conducted to evaluate the bioactivities of A-319/A-329 in vitro and in vivo including binding to CD3 and CD19 antigens, T-cell and B-cell binding activities, T cell activation and proliferation and B cell killing activities in vitro as well as in vivo efficacy using human PBMC engrafted mouse xenograft models. The in vitro data showed that the mono-valent and bi-valent CD19 binding had little effect on the CD3-associated activities including CD3 antigen binding affinity, T cell binding and T cell activation. In contrast, the bi-valent binding format A-329 showed better potency compared to the mono-valent format A-319 in CD19 binding (KD 0.89 nM vs 19.4 nM); B cell binding (EC50 at 2.3 pM vs 462 pM); in vitro human B cell killing (EC50 0.2 pM vs 3.4 pM). Both A-319 and A-329 were capable of mediating tumor cell lysis with EC50 at 0.03~4 pM. A-329 demonstrated a greater killing activity on Pfeiffer, a human diffuse large B-cell lymphoma (DLBCL) cell line with a low expression of CD19 antigen. In human PBMC engrafted NOG mouse xenograft model, a dose-dependent tumor growth inhibition was observed at 0.5~100 µg/kg in both A-319 and A-329. In monkey studies, when A-319 and A-329 was dosed at 3, 10, 30 µg/kg, twice or three times weekly via IV infusion for A-329 or A-319. Dose-dependent elimination of peripheral blood B cells were observed with both ITabTM. The CD19 bi-valent format of A-329 revealed more complete B cell killing in monkeys. No significant difference of cytokine induction or liver injuries were observed between A-319 and A-329. These results demonstrated that both A-319 and A-329 may benefit patients with B cell malignancies with less dosing frequency and lower cytokine inductions especially, A-329 may have the potential to targeting the low CD19 expressing tumor stem cells. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e19008-e19008
Author(s):  
Carlos Cuesta ◽  
Cecilia Munoz-Callega ◽  
Javier Loscertales ◽  
Fernando Terron ◽  
Wim Mol

e19008 Background: CCR7 is highly expressed in many hematological malignancies including CLL, several B-cell non-Hodgkin lymphomas (NHL), and various T-cell neoplasias with nodal involvement. Upon engagement by its ligands (CCL19 and CCL21), CCR7 controls trafficking of cells to locations where these chemokines are expressed, such as the lymph node (LN) and central nervous system. In these protective microenvironments CCR7 ligands contribute to tumor cell survival and proliferation. Indeed, both high CCR7 surface expression levels and high migratory responses to CCR7 ligands correlate with LN involvement, adverse prognostic factors, and shorter patient survival. Thus, strategies targeting CCR7 could provide a novel therapeutic approach for CCR7+ hematological malignancies. Methods: We have generated CAP-100, the first humanized immunoglobulin G1 (IgG1) monoclonal antibody (mAb) that specifically binds to human CCR7 and neutralizes ligand-mediated signaling from both CCL19 and CCL21, and evaluated the antibody in various in-vitro and in-vivo preclinical models. Results: CAP-100 effectively inhibited in vitro migration of primary patient samples of CLL, B-cell NHLs and T-cell neoplasias such as T-PLL or T-ALL. Furthermore, in in vivo pre-clinical studies, CAP-100 was shown to inhibit entry of CCR7-expressing cells to LNs. CAP-100 also abrogated survival elicited by CCR7 in CLL, and showed potent cell killing activity against CLL or CCR7+ T-lymphomas cells. This Fc-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) clearly outperformed anti-CD20 or anti-CD52 standard-of-care antibodies in B-NHL and T-lymphomas respectively. In all cases, ADCC and migration inhibition were both independent of prognostic markers for high risk disease. Finally, when given as monotherapy in disseminated B-NHL and CLL xenograft tumors in SCID mice, CAP-100 exhibited tumor growth inhibition and extended survival significantly. Conclusions: Our results demonstrate that CAP-100, the first-in-class anti-CCR7 mAb, is a potent antagonist with biological activity in several CCR7+ hematological malignancies, including relapsed/refractory disease. Moreover, these results highlight the relevance of the CCR7-CCL19/CCL21 pathway as a therapeutic target in these diseases. CAP-100’s unique propensity to block migration of tumor cells to the LN, in combination with its potent cell killing activity provides the biological rationale for use of CAP-100, either as monotherapy or in combination with novel agents. Clinical trials in CLL and CCR7-expressing NHL will be initiated soon.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii90-ii90
Author(s):  
Alexander Haddad ◽  
Jordan Spatz ◽  
Sara Collins ◽  
Matheus Pereira ◽  
Sabraj Gill ◽  
...  

Abstract BACKGROUND Severe local and systemic immune suppression in glioblastoma (GBM) contributes to the failure of single-agent immunotherapies in clinical trials. In this study, we evaluated the efficacy of locally delivered combination immunotherapy in a poorly immunogenic murine GBM model. METHODS Immunomodulators used in these studies included: IL-15 and IL-7 (T cell activation), LIGHT (T cell tumor infiltration), FLT3L (dendritic cell maturation/proliferation), a surface T cell engager (T cell killing of tumor cells), and a bispecific PD-L1/T cell engager (T cell killing targeted to PD-L1-expressing cells). We first assessed T cell-mediated cytotoxicity in vitro against SB28, a poorly immunogenic murine GBM cell line, after expressing these immunomodulators in combination. Next, tumor growth inhibition in vivo was evaluated in syngeneic C57BL/6 mice, initially by establishment of intracranial tumors with pre-transduced SB28 cells, and subsequently by delivering these immunomodulators to pre-established naïve SB28 tumors using neural stem cells (NSCs) and retroviral replicating vectors (RRV). RESULTS SB28 cells transduced with immunomodulators activated dose-dependent T cell-mediated cytotoxicity in vitro. Mice with pre-transduced intracranial SB28 gliomas showed significantly longer survival (minimum survival: 60 days, long-term survival in 57% of mice) vs. control mice (median survival: 20 days) (p&lt; 0.001), and significantly increased tumor infiltration of CD4+ and CD8+ T cells. NSC- and RRV-mediated immunomodulator delivery to pre-established SB28 gliomas also resulted in significantly increased survival of treated mice vs. controls (median survival: 31 days vs. 22 days, p&lt; 0.001). Immunomodulator-treated tumors again showed significantly increased infiltration of CD4+ and CD8+ T cells, along with decreased CD11b+ cell infiltration. CONCLUSIONS A novel combination therapy for GBM immunotherapy activated T cell killing of SB28 GBM cells in vitro and achieved a significant survival benefit in vivo, associated with anti-tumor alterations to the GBM tumor microenvironment. Further studies to optimize the efficiency of combinatorial immunomodulator delivery are currently underway.


BIO-PROTOCOL ◽  
2018 ◽  
Vol 8 (22) ◽  
Author(s):  
Mahdia Benkhoucha ◽  
Nicolas Molnarfi ◽  
Elodie Belnoue ◽  
Madiha Derouazi ◽  
Patrice Lalive
Keyword(s):  
T Cell ◽  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 8044-8044
Author(s):  
Marie-Agnès Doucey ◽  
Blandine Pouleau ◽  
Carole Estoppey ◽  
Cian Stutz ◽  
Amelie Croset ◽  
...  

8044 Background: ISB 1342 is a bispecific antibody heterodimer based on the Ichnos proprietary Bispecific Engagement by Antibodies based on T cell receptor (BEAT) platform. ISB 1342 is a first-in-class CD38 T cell engager under investigation in subjects with relapsed multiple myeloma refractory to proteasome inhibitors (PIs), immunomodulators (IMiDs) and daratumumab (study ISB 1342-101). Methods: ISB 1342 was engineered with a single chain variable fragment (scFv) arm that specifically recognizes a cluster of differentiation (CD)3-epsilon (CD3ε) and a fragment antigen binding (Fab) arm which specifically recognizes CD38 and does not compete with daratumumab. By co-engaging CD3ε on T cells and CD38 on tumor cells, ISB 1342 redirects T cells to kill CD38-expressing tumor cells. This mechanism of action is differentiated from existing monospecific CD38 targeting therapies and was designed to overcome resistance to daratumumab in multiple myeloma. Results: In vitro, ISB 1342 killed a large range of CD38-expressing tumor cell lines (EC50:12 to 90 pM) with 8 to 239-fold superior efficacy than daratumumab. ISB 1342 was also able to efficiently kill CD38 low-intermediate-expressing tumor cells that were poorly killed by daratumumab. ISB 1342 retained the potency to kill CD38 low-intermediate-expressing tumor cells when used in sequential or concomitant combination with daratumumab. In addition, the presence of soluble CD38 or glucocorticoid did not impact ISB 1342 killing potency. ISB 1342 was constructed with a double LALA mutation that dampens the binding to Fcγ receptors and C1q. Consistently, ISB 1342 showed only residual Fc-mediated effector functions and its mechanism of tumor cell killing critically relies on the engagement and the activation of T lymphocytes. ISB 1342 showed a favorable on target specificity profile in vitro and was unable to activate T cells in the absence of CD38 positive target cells. Further, ISB 1342-induced tumor cell killing was not associated with a detectable T cell fratricide in vitro. Finally, the potency of ISB 1342 was assessed in vivo in a therapeutic model of a subcutaneously established Daudi tumor co-xenografted with human PBMCs. In marked contrast to daratumumab, which induced only a partial tumor control, ISB 1342 induced complete tumor eradication when injected intravenously weekly at 0.5 mg/kg. As anticipated, the ISB 1342 control molecule (ISB 1342_13DU) made of an irrelevant CD38 binder failed to control tumor growth. The release of the Granzyme A and B, TNF-alpha and CXCL-10 in the tumor micro-environment one week post-treatment was strongly and significantly increased by ISB 1342 but not by daratumumab and ISB 1342_13DU; this represents a correlate of anti-tumor immunity associated with ISB 1342 efficacy in vivo. Conclusions: Hence the higher potency of ISB 1342 relative to daratumumab supports the ongoing clinical development in multiple myeloma patients.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A257-A257
Author(s):  
Thomas Gajewski ◽  
Emily Higgs ◽  
Shuyin Li ◽  
Blake Flood ◽  
Ken Hatogai

BackgroundCheckpoint blockade therapies have transformed the landscape of cancer care. Durable clinical responses have been observed in a subset of patients. However, many patients do not respond, and understanding the mechanisms that determine tumor resistant to checkpoint blockade drugs could potentially benefit more patients. Ferroptosis is a relatively newly described form of regulated cell death distinct from apoptosis and necroptosis. Recently, T cell-promoted tumor ferroptosis was shown to be an anti-tumor mechanism and targeting this pathway could be a potential therapeutic approach.MethodsTo identify genes critical to immunotherapy resistance, B16.SIY cells were transduced with a genome-scale gRNA lentivirus to generate loss of function mutants. In vitro-primed CD8+ T cells isolated from 2C/Rag2–/– TCR transgenic mice specific for the SIY antigen were co-cultured with transduced B16.SIY tumor cells. Resistant mutants were identified by sequencing the gRNAs of survival clones. The gene encoding Decr2, a peroxisomal 2,4-dienoyl-CoA reductase, was identified. To investigate the role of Decr2 in tumor growth and immune responses in vivo, the Decr2 knock-down or Decr2 overexpressed tumors were transplanted into B6 mice and the mice were subsequently treated with anti-PD-L1 antibody. The tumor microenvironments were analyzed by flow cytometry. To understand the resistance mechanism of Decr2 knock-down tumors, RNA-seq was performed and analyzed. The CD8+ T cell mediated tumor ferroptosis in vitro and in vivo was analyzed for lipid reactive oxygen species.ResultsDecr2 mutants were relatively resistant to CD8+ T cell killing in vitro. Consistent with this resistance to CD8+ T cell killing, Decr2 knock-down tumors showed minimal response to anti-PDL1 therapy in vivo. RNA-seq analysis of Decr2 knock-down B16.SIY tumors revealed upregulation of ferroptosis-related genes, including slc7a11. Further mechanistic studies showed that Decr2 knock-down tumors displayed defects in ferroptosis in vitro and in vivo.ConclusionsDecr2-deficient tumors were relatively resistant to CD8+ T cell killing in vitro and anti-PD-L1 immunotherapy in vivo by modulating CD8+ T cell-induced ferroptosis.


Sign in / Sign up

Export Citation Format

Share Document