scholarly journals Nano-Architectural Alterations in Mucus Layer Fecal Colonocytes in Field Carcinogenesis: Potential for Screening

2013 ◽  
Vol 6 (10) ◽  
pp. 1111-1119 ◽  
Author(s):  
Hemant K. Roy ◽  
Dhwanil P. Damania ◽  
Mart DelaCruz ◽  
Dhananjay P. Kunte ◽  
Hariharan Subramanian ◽  
...  
2010 ◽  
Vol 138 (5) ◽  
pp. S-288
Author(s):  
Mart DeLaCruz ◽  
Ramesh K. Wali ◽  
Dhananjay Kunte ◽  
Ashish K. Tiwari ◽  
Tina P. Ward ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2630
Author(s):  
Jiah Yeom ◽  
Seongho Ma ◽  
Jeong-Keun Kim ◽  
Young-Hee Lim

Colitis causes destruction of the intestinal mucus layer and increases intestinal inflammation. The use of antioxidants and anti-inflammatory agents derived from natural sources has been recently highlighted as a new approach for the treatment of colitis. Oxyresveratrol (OXY) is an antioxidant known to have various beneficial effects on human health, such as anti-inflammatory, antibacterial activity, and antiviral activity. The aim of this study was to investigate the therapeutic effect of OXY in rats with dextran sulfate sodium (DSS)-induced acute colitis. OXY ameliorated DSS-induced colitis and repaired damaged intestinal mucosa. OXY downregulated the expression of pro-inflammatory cytokine genes (TNF-α, IL-6, and IL-1β) and chemokine gene MCP-1, while promoting the production of anti-inflammatory cytokine IL-10. OXY treatment also suppressed inflammation via inhibiting cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression in the colon, as well as the activity of myeloperoxidase (MPO). OXY exhibited anti-apoptotic effects, shifting the Bax/Bcl-2 balance. In conclusion, OXY might improve DSS-induced colitis by restoring the intestinal mucus layer and reducing inflammation within the intestine.


2017 ◽  
Vol 35 (1-2) ◽  
pp. 21-24 ◽  
Author(s):  
Eduard F. Stange

In Crohn's disease, the mucus layer appears to be defective in terms of low defensin levels and lack of antibacterial activity. These deficiencies actually explain the Montreal phenotypes and the stable localization of disease in the terminal ileum with low α-defensins from Paneth cells and/or low β-defensins in colonic disease, respectively. Conversely, in ulcerative colitis (UC) the defensin production is normal or even induced, but the mucus layer is thinner and patchy, more in the liquid form and also chemically altered so that antibacterial peptides are not retained and lost into the luminal bacterial bulk. Therefore, both barrier problems allow slow bacterial attachment and invasion, ultimately triggering the massive response of adaptive immunity and tissue destruction. Therefore, leakiness should refer to the antibacterial barrier and not to the general barrier against small molecules, such as mannitol or lactulose, which are not antigenic. The most promising approach in UC seems to be the use of probiotics or the natural compound lecithin as a stabilizer of mucus structure to enhance the barrier. While a phase II study has yielded positive results, the results of the ongoing phase III study are eagerly awaited. It is quite possible that the protective effect of smoking in UC is related to mucus production in the colon also, but this is not an option. Another alternative would be to shift cell differentiation in the colon towards goblet cell; the relevant differentiation factors are known. In Crohn's disease, the direct oral application of defensins might be effective if release and binding to the mucus are achieved. In the experimental colitis model, this works quite well. In conclusion, in a situation where enthusiasm about so-called biologics is declining due to loss of response over time, searching for the primary defects in inflammatory bowel disease and treating them may well be worthwhile, although it is unlikely to provide rapid relief.


2013 ◽  
Vol 4 (4) ◽  
pp. 299-312 ◽  
Author(s):  
R. De Weirdt ◽  
E. Coenen ◽  
B. Vlaeminck ◽  
V. Fievez ◽  
P. Van den Abbeele ◽  
...  

Lactobacillus reuteri is a commensal, beneficial gut microbe that colonises the intestinal mucus layer, where it makes close contact with the human host and may significantly affect human health. Here, we investigated the capacity of linoleic acid (LA), the most common polyunsaturated fatty acid (PUFA) in a Western-style diet, to affect L. reuteri ATCC PTA 6475 prevalence and survival in a simulated mucus layer. Short-term (1 h) survival and mucin-agar adhesion assays of a log-phase L. reuteri suspension in intestinal water demonstrated that the simulated mucus layer protected L. reuteri against the inhibitory effects of LA by lowering its contact with the bacterial cell membrane. The protective effect of the simulated mucus layer was further evaluated using a more complex and dynamic model of the colon microbiota (SHIME®), in which L. reuteri survival was monitored during 6 days of daily exposure to LA in the absence (L-SHIME) and presence (M-SHIME) of a simulated mucus layer. After 6 days, luminal L- and M-SHIME L. reuteri plate counts had decreased by 3.1±0.5 and 2.6±0.9 log cfu/ml, respectively. Upon supplementation of 1.0 g/l LA, the decline in the luminal L. reuteri population started earlier than was observed for the control. In contrast, mucin-agar levels of L. reuteri (in the M-SHIME) remained unaffected throughout the experiment even in the presence of high concentrations of LA. Overall, the results of this study indicate the importance of the mucus layer as a protective environment for beneficial gut microbes to escape from stress by high loads of the antimicrobial PUFA LA to the colon, i.e. due to a Western-style diet.


Shock ◽  
2011 ◽  
Vol 35 (3) ◽  
pp. 275-281 ◽  
Author(s):  
Xiaofa Qin ◽  
Sharvil U. Sheth ◽  
Susan M. Sharpe ◽  
Wei Dong ◽  
Qi Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document