CAR T-cell Target Antigen Identified in Gastric Cancers

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 963-963 ◽  
Author(s):  
Robbie G. Majzner ◽  
Skyler P. Rietberg ◽  
Louai Labanieh ◽  
Elena Sotillo ◽  
Evan W. Weber ◽  
...  

Abstract Target antigen density has emerged as a major factor influencing the potency of CAR T cells. Our laboratory has demonstrated that the activity of numerous CARs is highly dependent on target antigen density (Walker et al., Mol Ther, 2017), and high complete response rates in a recent trial of CD22 CAR T cells for B-ALL were tempered by frequent relapses due to decreased CD22 antigen density on lymphoblasts (Fry et al., Nat Med, 2018). To assess if antigen density is also a determinant of CD19 CAR T cell therapeutic success, we analyzed CD19 antigen density from fifty pediatric B-ALL patients treated on a clinical trial of CD19-CD28ζ CAR T cells. We found that patients whose CD19 expression was below a threshold density (2000 molecules/lymphoblast) were significantly less likely to achieve a clinical response than those whose leukemia expressed higher levels of CD19. In order to further understand this limitation and how it may be overcome, we developed a model of variable CD19 antigen density B-ALL. After establishing a CD19 knockout of the B-ALL cell line NALM6, we used a lentivirus to reintroduce CD19 and then FACS sorted and single cell cloned to achieve a library of NALM6 clones with varying CD19 surface densities. CD19-CD28ζ CAR T cell activity was highly dependent on CD19 antigen density. We observed decreases in cytotoxicity, proliferation, and cytokine production by CD19 CAR T cells when encountering CD19-low cells, with an approximate threshold of 2,000 molecules of CD19 per lymphoblast, below which, cytokine production in response to tumor cells was nearly ablated. Given that a CD19-4-1BBζ CAR is FDA approved for children with B-ALL and adults with DLBCL, we wondered whether CARs incorporating this alternative costimulatory domain would have similar antigen density thresholds for activation. Surprisingly, CD19-4-1BBζ CAR T cells made even less cytokine, proliferated less, and had further diminished cytolytic capacity against CD19-low cells compared to CD19-CD28ζ CAR T cells. Analysis by western blot of protein lysates from CAR T cells stimulated with varying amounts of antigen demonstrated that CD19-CD28ζ CAR T cells had higher levels of downstream signals such as pERK than CD19-4-1BBζ CAR T cells at lower antigen densities. Accordingly, calcium flux after stimulation was also significantly higher in CD19-CD28ζ than CD19-4-1BBζ CAR T cells. In a xenograft model of CD19-low B-ALL, CD19-4-1BBζ CAR T cells demonstrated no anti-tumor activity, while CD19-CD28ζ CAR T cells eradicated CD19-low leukemia cells. Therefore, the choice of costimulatory domain in CAR T cells plays a major role in modulating activity against low antigen density tumors. CD28 costimulation endows high reactivity towards low antigen density tumors. We confirmed the generalizability of this finding using Her2 CAR T cells; Her2-CD28ζ CAR T cells cleared tumors in an orthotopic xenograft model of Her2-low osteosarcoma, while Her2-4-1BBζ CAR T cells had no effect. This finding has implications for CAR design for lymphoma and solid tumors, where antigen expression is more heterogeneous than B-ALL. To enhance the activity of CD19-4-1BBζ CAR T cells against CD19-low leukemia, we designed a CAR with two copies of intracellular zeta in the signaling domain (CD19-4-1BBζζ). T cells expressing this double-zeta CAR demonstrated enhanced cytotoxicity, proliferation, cytokine production, and pERK signaling in response to CD19-low cells compared to single-zeta CARs. Additionally, in a xenograft model, CD19-4-1BBζζ CAR T cells demonstrated enhanced activity against CD19-low leukemia compared to CD19-4-1BBζ CAR T cells, significantly extending survival. The addition of a third zeta domain (CD19-4-1BBζζζ) further enhanced the activity of CAR T cells. However, inclusion of multiple copies of the costimulatory domains did not improve function. In conclusion, CD19 antigen density is an important determinant of CAR T cell function and therapeutic response. CD19-CD28ζ CARs are more efficient at targeting CD19-low tumor cells than CD19-4-1BBζ CARs. The addition of multiple zeta domains to the CAR enhances its ability to target low antigen density tumors. This serves as proof of concept that rational redesign of CAR signaling endodomains can result in enhanced function against low antigen density tumors, an important step for extending the reach of these powerful therapeutics and overcoming a significant mechanism of tumor escape. Disclosures Lee: Juno: Consultancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2774-2774
Author(s):  
Sascha Haubner ◽  
Jorge Mansilla-Soto ◽  
Sarah Nataraj ◽  
Xingyue He ◽  
Jae H Park ◽  
...  

Abstract CAR T cell therapy provides a potent therapeutic option in various B cell-related hematologic malignancies. One of the major efficacy challenges is escape of tumor cells with low antigen density, which has been clinically observed in several malignancies treated with CAR therapy. Novel concepts of CAR design are needed to address phenotypic heterogeneity including clonal variability of target antigen expression. In the study presented here, we focused on AML and selected ADGRE2 as CAR target due to its high rate of positivity on AML bulk and leukemic stem cells (LSC) in a molecularly heterogeneous AML patient population. We chose an ADGRE2-CAR with optimized scFv affinity and fine-tuned CD3zeta signaling to achieve an ideal killing threshold that would allow for sparing of ADGRE2-low normal cells. We hypothesized that co-targeting of a second AML-related antigen may mitigate potential CAR target antigen-low AML escape and we identified CLEC12A as preferential co-target due to its non-overlapping expression profiles in normal hematopoiesis and other vital tissues. We developed ADCLEC.syn1, a novel combinatorial CAR construct consisting of an ADGRE2-targeting 28z1XX-CAR and a CLEC12A-targeting chimeric costimulatory receptor (CCR). ADCLEC.syn1 operates based on what we describe as "IF-BETTER" gate: High CAR target expression alone triggers killing, whereas low CAR target expression does not, unless a CCR target is present. Additional CCR interaction lowers the threshold for CAR-mediated killing through increased avidity and costimulation, allowing for higher CAR sensitivity that is purposefully limited to target cells expressing both antigens. In the context of ADCLEC.syn1, ADGRE2-high/CLEC12A-negative AML cells can trigger cell lysis while ADGRE2-low/CLEC12A-negative normal cells are spared. Importantly, ADGRE2-low/CLEC12A-high AML cells are also potently eliminated, preventing ADGRE2-low AML escape. Using NSG in-vivo xenograft models of engineered MOLM13 AML cell line variants with low levels of ADGRE2 to model antigen escape, we found that ADCLEC.syn1 outperforms a single-ADGRE2-CAR lacking assistance via CLEC12A-CCR. Importantly, ADCLEC.syn1 also outperformed an otherwise identical alternative dual-CAR version (OR-gated ADGRE2-CAR+CLEC12A-CAR) in the setting of both ADGRE2-high and ADGRE2-low MOLM13, further underlining the importance of fine-tuned overall signaling. We confirmed high in-vivo potency against diverse AML cell lines with a wide range of ADGRE2 and CLEC12A levels reflecting population-wide AML heterogeneity. At clinically relevant CAR T cell doses, ADCLEC.syn1 induced complete and durable remissions in xenograft models of MOLM13 (ADGRE2-high/CLEC12A-low) and U937 (ADGRE2-low/CLEC12A-high). ADCLEC.syn1 CAR T cells were found to be functionally persistent for >70 days, with a single CAR T cell dose potently averting relapse modeled via AML re-challenges. In summary, we provide pre-clinical evidence that an "IF-BETTER"-gated CAR+CCR T cell (ADCLEC.syn1) can outperform a single-CAR T cell (ADGRE2-CAR) and a dual-CAR T cell (ADGRE2-CAR+CLEC12A-CAR). ADCLEC.syn1 enhances antileukemic efficacy and prevents antigen-low AML escape via detection of a rationally selected combinatorial target antigen signature that is commonly found in AML but limited in vital normal cells. Using phenotypically representative AML xenograft models and clinically relevant T cell doses, we demonstrate high therapeutic potential of ADCLEC.syn1 CAR T cells, further supporting clinical translation of an "IF-BETTER"-gated CAR concept into a phase 1 trial. Disclosures Haubner: Takeda Pharmaceuticals Company Ltd.: Patents & Royalties: Co-inventor of IP that MSK licensed to Takeda, Research Funding. Mansilla-Soto: Takeda Pharmaceuticals Company Ltd.: Patents & Royalties; Atara Biotherapeutics: Patents & Royalties; Fate Therapeutics: Patents & Royalties; Mnemo Therapeutics: Patents & Royalties. He: Takeda Pharmaceuticals Company Ltd.: Ended employment in the past 24 months, Patents & Royalties. Park: Curocel: Consultancy; BMS: Consultancy; Innate Pharma: Consultancy; Autolus: Consultancy; Servier: Consultancy; Kite Pharma: Consultancy; Affyimmune: Consultancy; Intellia: Consultancy; Minerva: Consultancy; PrecisionBio: Consultancy; Amgen: Consultancy; Kura Oncology: Consultancy; Artiva: Consultancy; Novartis: Consultancy. Rivière: Juno Therapeutics: Patents & Royalties; Fate Therapeutics: Other: Provision of Services, Patents & Royalties; Centre for Commercialization of Cancer Immunotherapy: Other: Provision of Services; The Georgia Tech Research Corporation (GTRC): Other: Provision of Services (uncompensated); FloDesign Sonics: Other: Provision of Services. Sadelain: NHLBI Gene Therapy Resource Program: Other: Provision of Services (uncompensated); St. Jude Children's Research Hospital: Other: Provision of Services; Minerva Biotechnologies: Patents & Royalties; Mnemo Therapeutics: Patents & Royalties; Juno Therapeutics: Patents & Royalties; Fate Therapeutics: Other: Provision of Services (uncompensated), Patents & Royalties; Ceramedix: Patents & Royalties; Takeda Pharmaceuticals: Other: Provision of Services, Patents & Royalties; Atara Biotherapeutics: Patents & Royalties.


2019 ◽  
Vol 25 (17) ◽  
pp. 5329-5341 ◽  
Author(s):  
Sneha Ramakrishna ◽  
Steven L. Highfill ◽  
Zachary Walsh ◽  
Sang M. Nguyen ◽  
Haiyan Lei ◽  
...  

Blood ◽  
2020 ◽  
Vol 135 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Na Wang ◽  
Xuelian Hu ◽  
Wenyue Cao ◽  
Chunrui Li ◽  
Yi Xiao ◽  
...  

Relapse following chemeric antigen receptor (CAR) T-cell therapy can arise from progressive loss of the CAR T cells or from loss of the target antigen by tumor cells. Wang et al report that using a mix of CAR T cells targeting CD19 and CD22 reduces relapse with antigen-negative tumor cells. However, a lack of CAR T-cell persistence leads to increased relapse with antigen-positive cells.


2021 ◽  
Vol 23 (1) ◽  
pp. 405
Author(s):  
Emanuela Guerra ◽  
Roberta Di Pietro ◽  
Mariangela Basile ◽  
Marco Trerotola ◽  
Saverio Alberti

Chimeric antigen receptor (CAR) therapy is based on patient blood-derived T cells and natural killer cells, which are engineered in vitro to recognize a target antigen in cancer cells. Most CAR-T recognize target antigens through immunoglobulin antigen-binding regions. Hence, CAR-T cells do not require the major histocompatibility complex presentation of a target peptide. CAR-T therapy has been tremendously successful in the treatment of leukemias. On the other hand, the clinical efficacy of CAR-T cells is rarely detected against solid tumors. CAR-T-cell therapy of cancer faces many hurdles, starting from the administration of engineered cells, wherein CAR-T cells must encounter the correct chemotactic signals to traffic to the tumor in sufficient numbers. Additional obstacles arise from the hostile environment that cancers provide to CAR-T cells. Intense efforts have gone into tackling these pitfalls. However, we argue that some CAR-engineering strategies may risk missing the bigger picture, i.e., that a successful CAR-T-cell therapy must efficiently intertwine with the complex and heterogeneous responses that the body has already mounted against the tumor. Recent findings lend support to this model.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6157
Author(s):  
Marius Maucher ◽  
Micha Srour ◽  
Sophia Danhof ◽  
Hermann Einsele ◽  
Michael Hudecek ◽  
...  

Adoptive transfer of gene-engineered chimeric antigen receptor (CAR)-T-cells has emerged as a powerful immunotherapy for combating hematologic cancers. Several target antigens that are prevalently expressed on AML cells have undergone evaluation in preclinical CAR-T-cell testing. Attributes of an ‘ideal’ target antigen for CAR-T-cell therapy in AML include high-level expression on leukemic blasts and leukemic stem cells (LSCs), and absence on healthy tissues, normal hematopoietic stem and progenitor cells (HSPCs). In contrast to other blood cancer types, where CAR-T therapies are being similarly studied, only a rather small number of AML patients has received CAR-T-cell treatment in clinical trials, resulting in limited clinical experience for this therapeutic approach in AML. For curative AML treatment, abrogation of bulk blasts and LSCs is mandatory with the need for hematopoietic recovery after CAR-T administration. Herein, we provide a critical review of the current pipeline of candidate target antigens and corresponding CAR-T-cell products in AML, assess challenges for clinical translation and implementation in routine clinical practice, as well as perspectives for overcoming them.


2022 ◽  
Author(s):  
Vardges Tserunyan ◽  
Stacey D Finley

In recent decades, chimeric antigen receptors (CARs) have been successfully used to generate engineered T cells capable of recognizing and eliminating cancer cells. The structure of CARs frequently includes costimulatory domains, which enhance the T cell response upon antigen encounter. However, it is not fully known how the CAR co-stimulatory domains influence T cell activation in the presence of biological variability. In this work, we used mathematical modeling to elucidate how the inclusion of one such co-stimulatory molecule, CD28, impacts the response of a population of engineered T cells under different sources of variability. Particularly, our simulations demonstrate that CD28-bearing CARs mediate a faster and more consistent population response under both target antigen variability and kinetic rate variability. We identify kinetic parameters that have the most impact on mediating cell activation. Finally, based on our findings, we propose that enhancing the catalytic activity of lymphocyte-specific protein tyrosine kinase (LCK) can result in drastically reduced and more consistent response times among heterogeneous CAR T cell populations.


2019 ◽  
Vol 20 (23) ◽  
pp. 5942 ◽  
Author(s):  
Dennis C. Harrer ◽  
Jan Dörrie ◽  
Niels Schaft

Targeting cancer cells using chimeric-antigen-receptor (CAR-)T cells has propelled adoptive T-cell therapy (ATT) to the next level. A plentitude of durable complete responses using CD19-specific CAR-T cells in patients suffering from various lymphoid malignancies resulted in the approval by the food and drug administration (FDA) of CD19-directed CAR-T cells for the treatment of acute lymphoblastic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). A substantial portion of this success in hematological malignancies can be traced back to the beneficial properties of the target antigen CD19, which combines a universal presence on target cells with no detectable expression on indispensable host cells. Hence, to replicate response rates achieved in ALL and DLBCL in the realm of solid tumors, where ideal target antigens are scant and CAR-T cells are still lagging behind expectations, the quest for appropriate target antigens represents a crucial task to expedite the next steps in the evolution of CAR-T-cell therapy. In this review, we want to highlight the potential of chondroitin sulfate proteoglycan 4 (CSPG4) as a CAR-target antigen for a variety of different cancer entities. In particular, we discuss merits and challenges associated with CSPG4-CAR-T cells for the ATT of melanoma, leukemia, glioblastoma, and triple-negative breast cancer.


Sign in / Sign up

Export Citation Format

Share Document