NR4A Orphan Nuclear Receptor Family in Peripheral Blood Eosinophils from Patients with Atopic Dermatitis and Apoptotic Eosinophils in vitro

2005 ◽  
Vol 137 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Shinji Kagaya ◽  
Ryoichi Hashida ◽  
Naganari Ohkura ◽  
Toshihiko Tsukada ◽  
Yuji Sugita ◽  
...  
Blood ◽  
2017 ◽  
Vol 130 (8) ◽  
pp. 1014-1025 ◽  
Author(s):  
Lynne R. Prince ◽  
Svenja D. Prosseda ◽  
Kathryn Higgins ◽  
Jennifer Carlring ◽  
Elizabeth C. Prestwich ◽  
...  

Key Points We demonstrate an important role for NR4A receptors in regulating neutrophil lifespan and homeostasis in vitro and in vivo. These findings may define targets for therapies for diseases driven by defects in neutrophil number and/or survival.


2007 ◽  
Vol 402 (3) ◽  
pp. 567-574 ◽  
Author(s):  
Min Jung Park ◽  
Hee Jeong Kong ◽  
Hye Young Kim ◽  
Hyeong Hoe Kim ◽  
Joon Hong Kim ◽  
...  

SHP (short heterodimer partner) is an orphan nuclear receptor that plays an important role in regulating glucose and lipid metabolism. A variety of transcription factors are known to regulate transcription of the PEPCK (phosphoenolpyruvate carboxykinase) gene, which encodes a rate-determining enzyme in hepatic gluconeogenesis. Previous reports identified glucocorticoid receptor and Foxo1 as novel downstream targets regulating SHP inhibition [Borgius, Steffensen, Gustafsson and Treuter (2002) J. Biol. Chem. 277, 49761–49796; Yamagata, Daitoku, Shimamoto, Matsuzaki, Hirota, Ishida and Fukamizu (2004) J. Biol. Chem. 279, 23158–23165]. In the present paper, we show a new molecular mechanism of SHP-mediated inhibition of PEPCK transcription. We also show that the CRE1 (cAMP regulatory element 1; −99 to −76 bp relative to the transcription start site) of the PEPCK promoter is also required for the inhibitory regulation by SHP. SHP repressed C/EBPα (CCAAT/enhancer-binding protein α)-driven transcription of PEPCK through direct interaction with C/EBPα protein both in vitro and in vivo. The formation of an active transcriptional complex of C/EBPα and its binding to DNA was inhibited by SHP, resulting in the inhibition of PEPCK gene transcription. Taken together, these results suggest that SHP might regulate a level of hepatic gluconeogenesis driven by C/EBPα activation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Laurent L’homme ◽  
Benan Pelin Sermikli ◽  
Olivier Molendi-Coste ◽  
Sébastien Fleury ◽  
Sandrine Quemener ◽  
...  

AbstractRetinoic acid receptor-related orphan receptor-alpha (RORα) is a transcription factor from the nuclear receptor family expressed by immune cells and involved in the development of obesity, insulin resistance (IR) and non-alcoholic steatohepatitis (NASH). It was recently reported that mice deficient for RORα in macrophages develop more severe NASH upon high fat diet (HFD) feeding due to altered Kupffer cell function. To better understand the role of RORα in obesity and IR, we independently generated a macrophage RORα-deficient mouse line. We report that RORα deletion in macrophages does not impact on HFD-induced obesity and IR. Surprisingly, we did not confirm an effect on NASH development upon HFD feeding nor in the more severe and obesity-independent choline-deficient, L-amino acid-defined diet model. Our results therefore show that RORα deletion in macrophages does not alter the development of obesity and IR and question its role in NASH.


2012 ◽  
Vol 26 (12) ◽  
pp. 2004-2015 ◽  
Author(s):  
Kai Xue ◽  
Jia-yin Liu ◽  
Bruce D. Murphy ◽  
Benjamin K. Tsang

Abstract Nuclear receptor subfamily 4 group A member1 (NR4A1), an orphan nuclear receptor, is involved in the transcriptional regulation of thecal cell androgen biosynthesis and paracrine factor insulin-like 3 (INSL3) expression. Androgens are known to play an important regulatory role in ovarian follicle growth. Using a chronically androgenized rat model, a preantral follicle culture model and virus-mediated gene delivery, we examined the role and regulation of NR4A1 in the androgenic control of preantral follicular growth. In the present study, Ki67 staining was increased in preantral follicles on ovarian sections from 5α-dihydrotestosterone (DHT)-treated rats. Preantral follicles from DHT-treated rats cultured for 4 d exhibited increased growth and up-regulation of mRNA abundance of G1/S-specific cyclin-D2 (Ccnd2) and FSH receptor (Fshr). Similarly, DHT (1 μm) increased preantral follicular growth and Ccnd2 and Fshr mRNA abundance in vitro. The NR4A1 expression was high in theca cells and was down-regulated by DHT in vivo and in vitro. Forced expression of NR4A1 augmented preantral follicular growth, androstenedione production, and Insl3 expression in vitro. Inhibiting the action of androgen (with androgen receptor antagonist flutamide) or INSL3 (with INSL3 receptor antagonist INSL3 B-chain) reduced NR4A1-induced preantral follicular growth. Furthermore, NR4A1 overexpression enhanced DHT-induced preantral follicular growth, a response attenuated by inhibiting INSL3. In conclusion, DHT promotes preantral follicular growth and attenuates thecal NR4A1 expression in vivo and in vitro. Our findings are consistent with the notion that NR4A1 serves as an important point of negative feedback to minimize the excessive preantral follicle growth in hyperandrogenism.


2002 ◽  
Vol 22 (13) ◽  
pp. 4661-4666 ◽  
Author(s):  
Chih-Rong Shyr ◽  
Loretta L. Collins ◽  
Xiao-Min Mu ◽  
Kenneth A. Platt ◽  
Chawnshang Chang

ABSTRACT Early in vitro cell culture studies suggested that testicular orphan nuclear receptor 2 (TR2), a member of the nuclear receptor superfamily, may play important roles in the control of several pathways including retinoic acids, vitamin D, thyroid hormones, and ciliary neurotrophic factor. Here we report the surprising results showing that mice lacking TR2 are viable and have no serious developmental defects. Male mice lacking TR2 have functional testes, including normal sperm number and motility, and both male and female mice lacking TR2 are fertile. In heterozygous TR2+/− male mice we found that β-galactosidase, the indicator of TR2 protein expression, was first detected at the age of 3 weeks and its expression pattern was restricted mainly in the spermatocytes and round spermatids. These protein expression patterns were further confirmed with Northern blot analysis of TR2 mRNA expression. Together, results from TR2-knockout mice suggest that TR2 may not play essential roles in spermatogenesis and normal testis development, function, and maintenance. Alternatively, the roles of TR2 may be redundant and could be played by other close members of the nuclear receptor superfamily such as testicular orphan receptor 4 (TR4) or unidentified orphan receptors that share many similar functions with TR2. Further studies with double knockouts of both orphan nuclear receptors, TR2 and TR4, may reveal their real physiological roles.


2004 ◽  
Vol 134 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Kaoru Ogawa ◽  
Mikito Itoh ◽  
Masami Miyagawa ◽  
Takeshi Nagasu ◽  
Yuji Sugita ◽  
...  

1999 ◽  
Vol 215 (2) ◽  
pp. 314-331 ◽  
Author(s):  
Tomoyuki Miyabayashi ◽  
Mark T Palfreyman ◽  
Ann E Sluder ◽  
Frank Slack ◽  
Piali Sengupta

Sign in / Sign up

Export Citation Format

Share Document