Determination of Plaque pH Changes within the Trough of an in situ Appliance Used to Study Mineral Changes in Early Carious Lesions

1997 ◽  
Vol 31 (1) ◽  
pp. 50-54 ◽  
Author(s):  
A.F. Hall ◽  
S.L. Creanor ◽  
R. Strang ◽  
R. Foye
1992 ◽  
Vol 71 (3_suppl) ◽  
pp. 924-928 ◽  
Author(s):  
J. Arends ◽  
J.J. ten Bosch

This paper compares the experimental techniques utilized to assess the de- or remineralization of enamel or dentin in intra-oral studies. In in situ studies, it is important for one to know how much mineral has been lost or gained, and where the loss or gain occurred. The main emphasis in this paper is on techniques suitable for direct or indirect mineral quantification. The measuring techniques considered are microradiography, iodine absorptiometry, various microhardness tests, polarized light, light-scattering, iodide permeability, and wet chemical analysis. The various techniques are compared concerning suitability for the determination of mineral content in vol% (or wt%), mineral changes in vol% μm (or kg.m–2), and mineral distributions. Furthermore, sample preparation, the importance of protein penetration, nominal mineral loss range, the estimated mineral loss threshold, and the applicability to dentin are compared and considered. It is concluded that, although more than ten techniques are available for the measurement of changes after de- or remineralization in situ, transverse microradiography is the most practical technique for the direct and quantitative measurement of mineral content, mineral changes, and mineral distributions. Cross-sectional microhardness testing and light-scattering are also practical indirect techniques for quantitative mineral loss (or gain) determinations in intra-oral studies.


1961 ◽  
Vol 38 (4) ◽  
pp. 545-562 ◽  
Author(s):  
L. Kecskés ◽  
F. Mutschler ◽  
I. Glós ◽  
E. Thán ◽  
I. Farkas ◽  
...  

ABSTRACT 1. An indirect paperchromatographic method is described for separating urinary oestrogens; this consists of the following steps: acidic hydrolysis, extraction with ether, dissociation of phenol-fractions with partition between the solvents. Previous purification of phenol fraction with the aid of paperchromatography. The elution of oestrogen containing fractions is followed by acetylation. Oestrogen acetate is isolated by re-chromatography. The chromatogram was developed after hydrolysis of the oestrogens 'in situ' on the paper. The quantity of oestrogens was determined indirectly, by means of an iron-reaction, after the elution of the iron content of the oestrogen spot, which was developed by the Jellinek-reaction. 2. The method described above is satisfactory for determining urinary oestrogen, 17β-oestradiol and oestriol, but could include 16-epioestriol and other oestrogenic metabolites. 3. The sensitivity of the method is 1.3–1.6 μg/24 hours. 4. The quantitative and qualitative determination of urinary oestrogens with the above mentioned method was performed in 50 pregnant and 9 non pregnant women, and also in 2 patients with granulosa cell tumour.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


2020 ◽  
Author(s):  
Satoshi Morooka ◽  
Nobuo Nakada ◽  
Yuhki Tsukada ◽  
Wu Gong ◽  
Takuro Kawasaki ◽  
...  

2013 ◽  
Vol 10 (4) ◽  
pp. 498-504 ◽  
Author(s):  
Lorena Martiniano ◽  
Joseany Almeida ◽  
Glene Cavalcante ◽  
Edmar Marques ◽  
Teresa Fonseca ◽  
...  

Author(s):  
ZhengWang ◽  
Lifang Xue ◽  
Mingji Li ◽  
Cuiping Li ◽  
Penghai Li ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document