Dexpanthenol Modulates Gene Expression in Skin Wound Healing in vivo

2012 ◽  
Vol 25 (5) ◽  
pp. 241-248 ◽  
Author(s):  
R. Heise ◽  
C. Skazik ◽  
Y. Marquardt ◽  
K. Czaja ◽  
K. Sebastian ◽  
...  
2019 ◽  
Vol 20 (15) ◽  
pp. 3679 ◽  
Author(s):  
Lin Chen ◽  
Alyne Simões ◽  
Zujian Chen ◽  
Yan Zhao ◽  
Xinming Wu ◽  
...  

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1219
Author(s):  
Luca Melotti ◽  
Tiziana Martinello ◽  
Anna Perazzi ◽  
Ilaria Iacopetti ◽  
Cinzia Ferrario ◽  
...  

Skin wound healing is a complex and dynamic process that aims to restore lesioned tissues. Collagen-based skin substitutes are a promising treatment to promote wound healing by mimicking the native skin structure. Recently, collagen from marine organisms has gained interest as a source for producing biomaterials for skin regenerative strategies. This preliminary study aimed to describe the application of a collagen-based skin-like scaffold (CBSS), manufactured with collagen extracted from sea urchin food waste, to treat experimental skin wounds in a large animal. The wound-healing process was assessed over different time points by the means of clinical, histopathological, and molecular analysis. The CBSS treatment improved wound re-epithelialization along with cell proliferation, gene expression of growth factors (VEGF-A), and development of skin adnexa throughout the healing process. Furthermore, it regulated the gene expression of collagen type I and III, thus enhancing the maturation of the granulation tissue into a mature dermis without any signs of scarring as observed in untreated wounds. The observed results (reduced inflammation, better re-epithelialization, proper development of mature dermis and skin adnexa) suggest that sea urchin-derived CBSS is a promising biomaterial for skin wound healing in a “blue biotechnologies” perspective for animals of Veterinary interest.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Kareem Abdelsaid ◽  
Sudhahar Varadarajan ◽  
Archita Das ◽  
Yutao Liu ◽  
Xuexiu Fang ◽  
...  

Background: Exosomes, key mediators of cell-cell communication, derived from type 2 diabetes mellitus (T2DM) have detrimental effects. Exercise not only improves endothelial dysfunction and angiogenesis in T2DM but also induces secretion of exosomes into circulation. Extracellular superoxide dismutase (ecSOD) is a major secretory Cu containing antioxidant enzyme that catalyzes dismutation of O 2 •- to H 2 O 2 and its full activity requires Cu transporter ATP7A. We reported that ecSOD-derived H 2 O 2 in endothelial cells (ECs) enhances angiogenesis while impaired ATP7A-ecSOD axis in diabetes induces endothelial dysfunction. Here we examined whether exercise-derived exosomes (Exe-Exo) may have pro-angiogenic effects via regulating ATP7A-ecSOD axis in T2DM. Results: Two weeks of voluntary wheel exercise of control C57Bl6 mice increased plasma exosome levels (6.2-fold) characterized by Nanosight, TEM and exosome markers (CD63, CD81, Tsg101). Treatment of HUVECs with equal number of exosomes revealed that angiogenic responses such as EC migration (1.8-fold) and tube formation (1.7-fold) were significantly enhanced by Exe-Exo compared to sedentary-derived exosomes (Sed-Exo). This was associated with increased ATP7A (2.9-fold) and ecSOD (1.4-fold) expression in Exe-Exo. Sed-Exo from high fat-induced T2DM mice significantly decreased EC migration (40%) and tube formation (10%) as well as ATP7A expression (28%) compared to Sed-Exo from control mice, which were restored by T2DM Exe-Exo, but not by T2DM/ecSOD KO Exe-Exo. Furthermore, exosomes overexpressing ecSOD (ecSOD-Exo) which mimic exercise increased angiogenesis and H2O2 levels in ECs, which were inhibited by overexpression of catalase. In vivo, skin wound healing model showed that direct application of T2DM Sed-Exo delayed while T2DM Exe-Exo enhanced wound healing of control mice. Furthermore, defective wound healing in T2DM mice or ecSOD KO mice were rescued by ecSOD-Exo application. Conclusion: Exercise training improves pro-angiogenic function of circulating exosomes in T2DM via increasing ATP7A-ecSOD axis, which may provide an effective therapy for promoting angiogenesis and wound repair in metabolic and cardiovascular diseases.


2020 ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo.Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography.Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro.Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


2018 ◽  
Vol 310 (8) ◽  
pp. 639-650 ◽  
Author(s):  
Jose Ignacio Arias ◽  
Natalia Parra ◽  
Carolina Beato ◽  
Cristian Gabriel Torres ◽  
Christopher Hamilton-West ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Pengcheng Xu ◽  
Yaguang Wu ◽  
Lina Zhou ◽  
Zengjun Yang ◽  
Xiaorong Zhang ◽  
...  

Abstract Background Autologous platelet-rich plasma (PRP) has been suggested to be effective for wound healing. However, evidence for its use in patients with acute and chronic wounds remains insufficient. The aims of this study were to comprehensively examine the effectiveness, synergy and possible mechanism of PRP-mediated improvement of acute skin wound repair. Methods Full-thickness wounds were made on the back of C57/BL6 mice. PRP or saline solution as a control was administered to the wound area. Wound healing rate, local inflammation, angiogenesis, re-epithelialization and collagen deposition were measured at days 3, 5, 7 and 14 after skin injury. The biological character of epidermal stem cells (ESCs), which reflect the potential for re-epithelialization, was further evaluated in vitro and in vivo. Results PRP strongly improved skin wound healing, which was associated with regulation of local inflammation, enhancement of angiogenesis and re-epithelialization. PRP treatment significantly reduced the production of inflammatory cytokines interleukin-17A and interleukin-1β. An increase in the local vessel intensity and enhancement of re-epithelialization were also observed in animals with PRP administration and were associated with enhanced secretion of growth factors such as vascular endothelial growth factor and insulin-like growth factor-1. Moreover, PRP treatment ameliorated the survival and activated the migration and proliferation of primary cultured ESCs, and these effects were accompanied by the differentiation of ESCs into adult cells following the changes of CD49f and keratin 10 and keratin 14. Conclusion PRP improved skin wound healing by modulating inflammation and increasing angiogenesis and re-epithelialization. However, the underlying regulatory mechanism needs to be investigated in the future. Our data provide a preliminary theoretical foundation for the clinical administration of PRP in wound healing and skin regeneration.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 447 ◽  
Author(s):  
Fabian Ávila-Salas ◽  
Adolfo Marican ◽  
Soledad Pinochet ◽  
Gustavo Carreño ◽  
Oscar Valdés ◽  
...  

This research proposes the rational modeling, synthesis and evaluation of film dressing hydrogels based on polyvinyl alcohol crosslinked with 20 different kinds of dicarboxylic acids. These formulations would allow the sustained release of simultaneous bioactive compounds including allantoin, resveratrol, dexpanthenol and caffeic acid as a multi-target therapy in wound healing. Interaction energy calculations and molecular dynamics simulation studies allowed evaluating the intermolecular affinity of the above bioactive compounds by hydrogels crosslinked with the different dicarboxylic acids. According to the computational results, the hydrogels crosslinked with succinic, aspartic, maleic and malic acids were selected as the best candidates to be synthesized and evaluated experimentally. These four crosslinked hydrogels were prepared and characterized by FTIR, mechanical properties, SEM and equilibrium swelling ratio. The sustained release of the bioactive compounds from the film dressing was investigated in vitro and in vivo. The in vitro results indicate a good release profile for all four analyzed bioactive compounds. More importantly, in vivo experiments suggest that prepared formulations could considerably accelerate the healing rate of artificial wounds in rats. The histological studies show that these formulations help to successfully reconstruct and thicken epidermis during 14 days of wound healing. Moreover, the four film dressings developed and exhibited excellent biocompatibility. In conclusion, the novel film dressings based on hydrogels rationally designed with combinatorial and sustained release therapy could have significant promise as dressing materials for skin wound healing.


2008 ◽  
Author(s):  
Zhijia Yuan ◽  
Julia Zakehaleva ◽  
Hugang Ren ◽  
Weiliam Chen ◽  
Yingtian Pan

2020 ◽  
Vol 21 (14) ◽  
pp. 4952 ◽  
Author(s):  
Fernando Pereira Beserra ◽  
Lucas Fernando Sérgio Gushiken ◽  
Ana Júlia Vieira ◽  
Danilo Augusto Bérgamo ◽  
Patrícia Luísa Bérgamo ◽  
...  

Skin wound healing is a highly complex event that involves different mediators at the cellular and molecular level. Lupeol has been reported to possess different biological activities, such as anti-inflammatory, antioxidant, antidiabetic, and in vitro wound healing properties, which motivated us to proceed with in vivo studies. We aimed to investigate the wound healing effect of lupeol-based cream for 3, 7, and 14 days. Wound excisions were induced on the thoraco-lumbar region of rats and topically treated immediately after injury induction. Macroscopic, histopathological, and immunohistochemical analyses were performed. Cytokine levels were measured by ELISA and gene expression was evaluated by real-time RT-qPCR. Our results showed a strong wound-healing effect of lupeol-based cream after 7 and 14 days. Lupeol treatment caused a reduction in proinflammatory cytokines (TNF-a, IL-1β, and IL-6) and gene and protein NF-κB expression, and positively altered IL-10 levels, showing anti-inflammatory effects in the three treatment periods. Lupeol treatment showed involvement in the proliferative phase by stimulating the formation of new blood vessels, increasing the immunostaining of Ki-67 and gene expression, and immunolabeling of vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF), and increasing gene expression of transforming growth factor beta-1 (TGF-β1) after seven days of treatment. Lupeol was also involved in the tissue regeneration phase by increasing the synthesis of collagen fibers noted in the three treatment periods analyzed. Our findings suggest that lupeol may serve as a novel therapeutic option to treat cutaneous wounds by regulating mechanisms involved in the inflammatory, proliferative, and tissue-remodeling phases.


Sign in / Sign up

Export Citation Format

Share Document