scholarly journals Cerebrospinal Fluid Biomarkers in Familial Forms of Alzheimer's Disease and Frontotemporal Dementia

2015 ◽  
Vol 40 (1-2) ◽  
pp. 54-62 ◽  
Author(s):  
Nina Rostgaard ◽  
Gunhild Waldemar ◽  
Jørgen Erik Nielsen ◽  
Anja Hviid Simonsen

As dementia is a fast-growing health care problem, it is becoming an increasingly urgent need to provide an early diagnosis in order to offer patients the best medical treatment and care. Validated biomarkers which reflect the pathology and disease progression are essential for diagnosis and are important when developing new therapies. Today, the core protein biomarkers amyloid-β42, total tau and phosphorylated tau in the cerebrospinal fluid (CSF) are used to diagnose Alzheimer's disease (AD), because these biomarkers have shown to reflect the underlying amyloid and tau pathology. However, the biomarkers have proved insufficient predictors of dementias with a different pathology, e.g. frontotemporal dementia (FTD); furthermore, the biomarkers are not useful for early AD diagnosis. Familial dementias with a known disease-causing mutation can be extremely valuable to study; yet the biomarker profiles in patients with familial dementias are not clear. This review summarizes CSF biomarker findings from studies on symptomatic and presymptomatic individuals carrying a mutation in one of the genes known to cause early-onset familial AD or FTD. In conclusion, the biomarker profile of inherited AD is quite similar between carriers of different mutations as well as similar to the profile found in sporadic AD, whereas familial FTD does not seem to have a clear biomarker profile. Hence, new biomarkers are needed for FTD.

2019 ◽  
Vol 90 (7) ◽  
pp. 740-746 ◽  
Author(s):  
Martha S Foiani ◽  
Claudia Cicognola ◽  
Natalia Ermann ◽  
Ione O C Woollacott ◽  
Carolin Heller ◽  
...  

BackgroundFrontotemporal dementia (FTD) is a pathologically heterogeneous neurodegenerative disorder associated usually with tau or TDP-43 pathology, although some phenotypes such as logopenic variant primary progressive aphasia are more commonly associated with Alzheimer’s disease pathology. Currently, there are no biomarkers able to diagnose the underlying pathology during life. In this study, we aimed to investigate the potential of novel tau species within cerebrospinal fluid (CSF) as biomarkers for tau pathology in FTD.Methods86 participants were included: 66 with a clinical diagnosis within the FTD spectrum and 20 healthy controls. Immunoassays targeting tau fragments N-123, N-mid-region, N-224 and X-368, as well as a non-phosphorylated form of tau were measured in CSF, along with total-tau (T-tau) and phospho-tau (P-tau(181)). Patients with FTD were grouped based on their Aβ42 level into those likely to have underlying Alzheimer’s disease (AD) pathology (n=21) and those with likely frontotemporal lobar degeneration (FTLD) pathology (n=45). The FTLD group was then subgrouped based on their underlying clinical and genetic diagnoses into those with likely tau (n=7) or TDP-43 (n=18) pathology.ResultsSignificantly higher concentrations of tau N-mid-region, tau N-224 and non-phosphorylated tau were seen in both the AD group and FTLD group compared with controls. However, none of the novel tau species showed a significant difference between the AD and FTLD groups, nor between the TDP-43 and tau pathology groups. In a subanalysis, normalising for total-tau, none of the novel tau species provided a higher sensitivity and specificity to distinguish between tau and TDP-43 pathology than P-tau(181)/T-tau, which itself only had a sensitivity of 61.1% and specificity of 85.7% with a cut-off of <0.109.ConclusionsDespite investigating multiple novel CSF tau fragments, none show promise as an FTD biomarker and so the quest for in vivo markers of FTLD-tau pathology continues.


2020 ◽  
Vol 6 (43) ◽  
pp. eaaz9360 ◽  
Author(s):  
Lenora Higginbotham ◽  
Lingyan Ping ◽  
Eric B. Dammer ◽  
Duc M. Duong ◽  
Maotian Zhou ◽  
...  

Alzheimer’s disease (AD) lacks protein biomarkers reflective of its diverse underlying pathophysiology, hindering diagnostic and therapeutic advancements. Here, we used integrative proteomics to identify cerebrospinal fluid (CSF) biomarkers representing a wide spectrum of AD pathophysiology. Multiplex mass spectrometry identified ~3500 and ~12,000 proteins in AD CSF and brain, respectively. Network analysis of the brain proteome resolved 44 biologically diverse modules, 15 of which overlapped with the CSF proteome. CSF AD markers in these overlapping modules were collapsed into five protein panels representing distinct pathophysiological processes. Synaptic and metabolic panels were decreased in AD brain but increased in CSF, while glial-enriched myelination and immunity panels were increased in brain and CSF. The consistency and disease specificity of panel changes were confirmed in >500 additional CSF samples. These panels also identified biological subpopulations within asymptomatic AD. Overall, these results are a promising step toward a network-based biomarker tool for AD clinical applications.


2012 ◽  
Vol 32 (1) ◽  
pp. 19-22 ◽  
Author(s):  
David Wallon ◽  
Anne Rovelet-Lecrux ◽  
Vincent Deramecourt ◽  
Jeremie Pariente ◽  
Sophie Auriacombe ◽  
...  

2021 ◽  
Vol 79 (1) ◽  
pp. 225-235
Author(s):  
Maya Arvidsson Rådestig ◽  
Johan Skoog ◽  
Henrik Zetterberg ◽  
Jürgen Kern ◽  
Anna Zettergren ◽  
...  

Background: We have previously shown that older adults with preclinical Alzheimer’s disease (AD) pathology in cerebrospinal fluid (CSF) had slightly worse performance in Mini-Mental State Examination (MMSE) than participants without preclinical AD pathology. Objective: We therefore aimed to compare performance on neurocognitive tests in a population-based sample of 70-year-olds with and without CSF AD pathology. Methods: The sample was derived from the population-based Gothenburg H70 Birth Cohort Studies in Sweden. Participants (n = 316, 70 years old) underwent comprehensive cognitive examinations, and CSF Aβ-42, Aβ-40, T-tau, and P-tau concentrations were measured. Participants were classified according to the ATN system, and according to their Clinical Dementia Rating (CDR) score. Cognitive performance was examined in the CSF amyloid, tau, and neurodegeneration (ATN) categories. Results: Among participants with CDR 0 (n = 259), those with amyloid (A+) and/or tau pathology (T+, N+) showed similar performance on most cognitive tests compared to participants with A-T-N-. Participants with A-T-N+ performed worse in memory (Supra span (p = 0.003), object Delayed (p = 0.042) and Immediate recall (p = 0.033)). Among participants with CDR 0.5 (n = 57), those with amyloid pathology (A+) scored worse in category fluency (p = 0.003). Conclusion: Cognitively normal participants with amyloid and/or tau pathology performed similarly to those without any biomarker evidence of preclinical AD in most cognitive domains, with the exception of slightly poorer memory performance in A-T-N+. Our study suggests that preclinical AD biomarkers are altered before cognitive decline.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Patricia Yuste-Checa ◽  
Victoria A. Trinkaus ◽  
Irene Riera-Tur ◽  
Rahmi Imamoglu ◽  
Theresa F. Schaller ◽  
...  

AbstractSpreading of aggregate pathology across brain regions acts as a driver of disease progression in Tau-related neurodegeneration, including Alzheimer’s disease (AD) and frontotemporal dementia. Aggregate seeds released from affected cells are internalized by naïve cells and induce the prion-like templating of soluble Tau into neurotoxic aggregates. Here we show in a cellular model system and in neurons that Clusterin, an abundant extracellular chaperone, strongly enhances Tau aggregate seeding. Upon interaction with Tau aggregates, Clusterin stabilizes highly potent, soluble seed species. Tau/Clusterin complexes enter recipient cells via endocytosis and compromise the endolysosomal compartment, allowing transfer to the cytosol where they propagate aggregation of endogenous Tau. Thus, upregulation of Clusterin, as observed in AD patients, may enhance Tau seeding and possibly accelerate the spreading of Tau pathology.


2021 ◽  
pp. 1-6
Author(s):  
Jagan A. Pillai ◽  
James Bena ◽  
Lynn M. Bekris ◽  
Nancy Foldvary-Schaefer ◽  
Catherine Heinzinger ◽  
...  

Sleep dysfunction has been identified in the pathophysiology of Alzheimer’s disease (AD); however, the role and mechanism of circadian rhythm dysfunction is less well understood. In a well-characterized cohort of patients with AD at the mild cognitive impairment stage (MCI-AD), we identify that circadian rhythm irregularities were accompanied by altered humoral immune responses detected in both the cerebrospinal fluid and plasma as well as alterations of cerebrospinal fluid biomarkers of neurodegeneration. On the other hand, sleep disruption was more so associated with abnormalities in circulating markers of immunity and inflammation and decrements in cognition.


2018 ◽  
Vol 15 (9) ◽  
pp. 820-827 ◽  
Author(s):  
Ryan Van Patten ◽  
Anne M. Fagan ◽  
David A.S. Kaufman

Background: There exists a need for more sensitive measures capable of detecting subtle cognitive decline due to Alzheimer's disease. Objective: To advance the literature in Alzheimer’s disease by demonstrating that performance on a cued-Stroop task is impacted by preclinical Alzheimer's disease neuropathology. Method: Twenty-nine cognitively asymptomatic older adults completed a computerized, cued-Stroop task in which accuracy rates and intraindividual variability in reaction times were the outcomes of interest. Cerebrospinal fluid biomarkers of Aβ42 and tau were measured and participants were then grouped according to a published p-tau/Aβ42 cutoff reflecting risk for Alzheimer’s disease (preclinical Alzheimer's disease = 14; control = 15). Results: ANOVAs indicated that accuracy rates did not differ between the groups but 4-second delay incongruent color-naming Stroop coefficient of variation reaction times were higher in the preclinical Alzheimer’s disease group compared to the control group, reflecting increased within-person variability. Moreover, partial correlations showed no relationships between cerebrospinal fluid biomarkers and accuracy rates. However, increases in coefficient of variation reaction times correlated with decreased Aβ42 and increases in p-tau and the p-tau/Aβ42 ratio. Conclusion: Results supported the ability of the computerized, cued-Stroop task to detect subtle Alzheimer’s disease neuropathology using a small cohort of cognitively asymptomatic older adults. The ongoing measurement of cued-Stroop coefficient of variation reaction times has both scientific and clinical utility in preclinical Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document