Molecular Mechanism and Prediction of Sorafenib Chemoresistance in Human Hepatocellular Carcinoma

2015 ◽  
Vol 33 (6) ◽  
pp. 771-779 ◽  
Author(s):  
Naoshi Nishida ◽  
Masayuki Kitano ◽  
Toshiharu Sakurai ◽  
Masatoshi Kudo

Hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide, and prognosis remains unsatisfactory when the disease is diagnosed at an advanced stage. Many molecular targeted agents are being developed for the treatment of advanced HCC; however, the only promising drug to have been developed is sorafenib, which acts as a multi-kinase inhibitor. Unfortunately, a subgroup of HCC is resistant to sorafenib, and the majority of these HCC patients show disease progression even after an initial satisfactory response. To date, a number of studies have examined the underlying mechanisms involved in the response to sorafenib, and trials have been performed to overcome the acquisition of drug resistance. The anti-tumor activity of sorafenib is largely attributed to the blockade of the signals from growth factors, such as vascular endothelial growth factor receptor and platelet-derived growth factor receptor, and the downstream RAF/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK cascade. The activation of an escape pathway from RAF/MEK/ERK possibly results in chemoresistance. In addition, there are several features of HCCs indicating sorafenib resistance, such as epithelial-mesenchymal transition and positive stem cell markers. Here, we review the recent reports and focus on the mechanism and prediction of chemoresistance to sorafenib in HCC.

Blood ◽  
2005 ◽  
Vol 106 (10) ◽  
pp. 3423-3431 ◽  
Author(s):  
Ahmad Salameh ◽  
Federico Galvagni ◽  
Monia Bardelli ◽  
Federico Bussolino ◽  
Salvatore Oliviero

AbstractVascular endothelial growth factor receptor-3 (VEGFR-3) plays a key role for the remodeling of the primary capillary plexus in the embryo and contributes to angiogenesis and lymphangiogenesis in the adult. However, VEGFR-3 signal transduction pathways remain to be elucidated. Here we investigated VEGFR-3 signaling in primary human umbilical vein endothelial cells (HUVECs) by the systematic mutation of the tyrosine residues potentially involved in VEGFR-3 signaling and identified the tyrosines critical for its function. Y1068 was shown to be essential for the kinase activity of the receptor. Y1063 signals the receptor-mediated survival by recruiting CRKI/II to the activated receptor, inducing a signaling cascade that, via mitogen-activated protein kinase kinase-4 (MKK4), activates c-Jun N-terminal kinase-1/2 (JNK1/2). Inhibition of JNK1/2 function either by specific peptide inhibitor JNKI1 or by RNA interference (RNAi) demonstrated that activation of JNK1/2 is required for a VEGFR-3–dependent prosurvival signaling. Y1230/Y1231 contributes, together with Y1337, to proliferation, migration, and survival of endothelial cells. Phospho-Y1230/Y1231 directly recruits growth factor receptor–bonus protein (GRB2) to the receptor, inducing the activation of both AKT and extracellular signal–related kinase 1/2 (ERK1/2) signaling. Finally, we observed that Y1063 and Y1230/Y1231 signaling converge to induce c-JUN expression, and RNAi experiments demonstrated that c-JUN is required for growth factor–induced prosurvival signaling in primary endothelial cells.


Author(s):  
Balaji Ommurugan ◽  
Amita Priya D ◽  
Navin Patil

ABSTRACTSorafenib an oral tyrosine kinase inhibitor is used in the treatment of hepatocellular carcinoma, renal cell carcinoma and thyroid cancer. Sorafenib acts by inhibiting various kinases like tyrosine kinase, RET tyrosine kinase, endothelial growth factor receptor, vascular endothelial growth factor 2 and 3 inhibits angiogenesis and cell proliferation. Acneiform eruptions are known side effect of EGFR inhibitors with incidence ranging between 20 to 90 percent [3], but acneiform eruptions with Sorafenib is seldom seen. Hence, we report a case of Sorafenib induced acneiform eruptions.Keywords: Sorafenib, EGFR, acneiform eruptions, adverse drug reactions


2019 ◽  
Vol 133 (12) ◽  
pp. 1309-1320 ◽  
Author(s):  
Feng Liu ◽  
George Bayliss ◽  
Shougang Zhuang

Abstract Nintedanib, a Food and Drug Administration-approved drug for the treatment of patients with idiopathic pulmonary fibrosis (IPK), inhibits both tyrosine kinase receptors and non-receptor kinases, and block activation of platelet-derived growth factor receptors, fibroblast growth factor receptor, vascular endothelial growth factor receptors, and Src family kinases. Preclinical and clinical studies have revealed the potent anti-fibrotic effect of nintedanib in IPK in human and animal models. Recent preclinical studies have also demonstrated the inhibitory effect of nintedanib on the development and progression of tissue fibrosis in other organs, including liver, kidney, and skin. The anti-fibrotic actions of nintedanib occur through a number of mechanisms, including blocking differentiation of fibroblasts to myofibroblasts, inhibition of epithelial–mesenchymal transition, and suppression of inflammation and angiogenesis. In this article, we summarize the mechanisms and efficacy of nintedanib in the treatment of fibrotic diseases in animal models and clinical trials, provide an update on recent advances in the development of other novel antifibrotic agents in preclinical and clinical study, and offer our perspective about the possible clinical application of these agents in fibrotic diseases.


Sign in / Sign up

Export Citation Format

Share Document