scholarly journals Immunoglobulin Light-Chain Amyloidosis: From Basics to New Developments in Diagnosis, Prognosis and Therapy

2016 ◽  
Vol 135 (3) ◽  
pp. 172-190 ◽  
Author(s):  
Eli Muchtar ◽  
Francis K. Buadi ◽  
Angela Dispenzieri ◽  
Morie A. Gertz

Immunoglobulin amyloid light-chain (AL) amyloidosis is the most common form of systemic amyloidosis, where the culprit amyloidogenic protein is immunoglobulin light chains produced by marrow clonal plasma cells. AL amyloidosis is an infrequent disease, and since presentation is variable and often nonspecific, diagnosis is often delayed. This results in cumulative organ damage and has a negative prognostic effect. AL amyloidosis can also be challenging on the diagnostic level, especially when demonstration of Congo red-positive tissue is not readily obtained. Since as many as 31 known amyloidogenic proteins have been identified to date, determination of the amyloid type is required. While several typing methods are available, mass spectrometry has become the gold standard for amyloid typing. Upon confirming the diagnosis of amyloidosis, a pursuit for organ involvement is essential, with a focus on heart involvement, even in the absence of suggestive symptoms for involvement, as this has both prognostic and treatment implications. Details regarding initial treatment options, including stem cell transplantation, are provided in this review. AL amyloidosis management requires a multidisciplinary approach with careful patient monitoring, as organ impairment has a major effect on morbidity and treatment tolerability until a response to treatment is achieved and recovery emerges.

2020 ◽  
Vol 143 (5) ◽  
pp. 500-503 ◽  
Author(s):  
Charlotte Gran ◽  
Johanna Borg Bruchfeld ◽  
Fredrik Ellin ◽  
Hareth Nahi

Immunoglobulin light-chain amyloidosis (AL) is a disease with limited treatment options due to the frailty of patients caused by organ damage. Since the clonal plasma cells often contain the cytogenetic aberration t(11;14), the Bcl-2 inhibitor venetoclax is suggested to have a role in the treatment of AL. Here, we report of a heart-transplanted patient, refractory to multiple therapies, reaching a rapid complete response with single-agent venetoclax.


2011 ◽  
Vol 29 (14) ◽  
pp. 1924-1933 ◽  
Author(s):  
Giampaolo Merlini ◽  
David C. Seldin ◽  
Morie A. Gertz

The systemic amyloidoses are a group of complex diseases caused by tissue deposition of misfolded proteins that results in progressive organ damage. The most common type, immunoglobulin light chain amyloidosis (AL), is caused by clonal plasma cells that produce misfolded light chains. The purpose of this review is to provide up-to-date information on diagnosis and treatment options for AL amyloidosis. Early, accurate diagnosis is the key to effective therapy, and unequivocal identification of the amyloidogenic protein may require advanced technologies and expertise. Prognosis is dominated by the extent of cardiac involvement, and cardiac staging directs the choice of therapy. Treatment for AL amyloidosis is highly individualized, determined on the basis of age, organ dysfunction, and regimen toxicities, and should be guided by biomarkers of hematologic and cardiac response. Alkylator-based chemotherapy is effective in almost two thirds of patients. Novel agents are also active, and trials are ongoing to establish their optimal use. Treatment algorithms will continue to be refined through controlled trials. Advances in basic research have led to the identification of new drug targets and therapeutic approaches, which will be integrated with chemotherapy in the future.


Blood ◽  
2016 ◽  
Vol 127 (19) ◽  
pp. 2275-2280 ◽  
Author(s):  
Brendan M. Weiss ◽  
Sandy W. Wong ◽  
Raymond L. Comenzo

Abstract Systemic immunoglobulin light chain (LC) amyloidosis (AL) is a potentially fatal disease caused by immunoglobulin LC produced by clonal plasma cells. These LC form both toxic oligomers and amyloid deposits disrupting vital organ function. Despite reduction of LC by chemotherapy, the restoration of organ function is highly variable and often incomplete. Organ damage remains the major source of mortality and morbidity in AL. This review focuses on the challenges posed by emerging therapies that may limit the toxicity of LC and improve organ function by accelerating the resorption of amyloid deposits.


2020 ◽  
Vol 144 (8) ◽  
pp. 967-973 ◽  
Author(s):  
Sara Javidiparsijani ◽  
Maria M. Picken

Context.— Amyloidoses are rare but heterogeneous disorders for which diagnosis is contingent upon the detection of deposits by Congo red stain and amyloid protein typing determines the treatment options. Objective.— To address the reporting of bone marrow (BM) involvement by amyloid in relation to the spatial distribution of deposits and to explore whether the location of deposits may have clinical relevance. Design.— We examined 66 BM biopsies positive for amyloid with regard to the location and type of amyloid, the percentage and clonality of plasma cells, other organ involvement, and relevant clinical information. Results.— In 21 cases, amyloid deposits involved BM stroma, whereas 45 cases were nonstromal. All cases of stromal involvement were typed as amyloid light chain (AL) amyloidosis (or presumed AL), whereas nonstromal involvement was associated with at least 3 types of amyloidosis: AL, amyloid transthyretin (ATTR), and amyloid A (AA). The initial diagnosis of amyloidosis was made in a BM specimen in 21 of 66 cases (31.8%). Plasma cells ranged from 1% to 80% (mean, 13.4%; median, 8%; <10% in 44 of 66 specimens [66.6%]) and were monoclonal in 58 of 66 cases (87.8%), and in 54 of 66 cases (81.8%) amyloid deposits were documented in at least one other organ. Conclusions.— This study demonstrates that there is significant heterogeneity in the spatial distribution of amyloid in BM biopsy specimens with medullary, extramedullary, purely vascular, or combined involvement. Whereas stromal deposits were associated exclusively with AL, nonstromal and purely vascular deposits were seen in at least 3 types of systemic amyloidosis (AL, AA, and ATTR). We discuss the reporting of BM biopsy tissue positivity for amyloid deposits.


2020 ◽  
Vol 143 (4) ◽  
pp. 373-380
Author(s):  
Layla Van Doren ◽  
Suzanne Lentzsch

Immunoglobulin light chain amyloidosis (AL amyloidosis) is a rare, life-threatening disease characterized by the deposition of misfolded proteins in vital organs such as the heart, the lungs, the kidneys, the peripheral nervous system, and the gastrointestinal tract. This causes a direct toxic effect, eventually leading to organ failure. The underlying B-cell lymphoproliferative disorder is almost always a clonal plasma cell disorder, most often a small plasma cell clone of <10%. Current therapy is directed toward elimination of the plasma cell clone with the goal of preventing further organ damage and reversal of the existing organ damage. Autologous stem cell transplantation has been shown to be a very effective treatment in patients with AL amyloidosis, although it cannot be widely applied as patients are often frail at presentation, making them ineligible for transplantation. Treatment with cyclophosphamide, bortezomib, and dexamethasone has emerged as the standard of care for the treatment of AL amyloidosis. Novel anti-plasma cell therapies, such as second generation proteasome inhibitors, immunomodulators, monoclonal antibodies targeting a surface protein on the plasma cell (daratumumab, elotuzumab), and the small molecular inhibitor venetoclax, have continued to emerge and are being evaluated in combination with the standard of care. However, there is still a need for therapies that directly target the amyloid fibrils and reverse organ damage. In this review, we will discuss current and emerging nonchemotherapy treatments of AL amyloidosis, including antifibril directed therapies under current investigation.


Author(s):  
Hermine Agis ◽  
Maria T. Krauth

SummaryImmunoglobulin light chain (AL) amyloidosis is a rare and underdiagnosed life-threatening systemic disease, primarily caused by insoluble depositions of misfolded monoclonal light chains. The monoclonal light chain paraprotein originates from a small clonal B‑cell or a clonal plasma cell population. If left undetected the paraprotein can induce a number of complications based on organ damage. The most dangerous and life-threatening organ dysfunction emerges from cardiac involvement. Thus, patients overall survival depends on early detection. Establishing the correct diagnosis and clear characterization of the amyloid-forming protein, staging, risk assessment and treatment are crucial and depend on a highly experienced interdisciplinary, multiprofessional team.


2020 ◽  
Vol 07 (04) ◽  
pp. 15-19
Author(s):  
Sanjay Kumar ◽  

Fifty-eight-year-old male admitted for evaluation of nephrotic syndrome and chronic diarrhoea was detected to have Immunoglobulin light chain amyloidosis (AL Amyloidosis) which was congo red inconclusive from renal biopsy. Bone marrow biopsy showed monoclonal plasma cells of 40% and light chain assay showed predominance of immunoglobulin lambda light chain. The diagnosis was neither fitting into the current diagnostic criteria for light chain Monoclonal Gammopathy of Renal Significance (MGRS) nor light chain myeloma. Literature is scarce regarding patients with AL amyloidosis having underlying clonal expansion not meeting the criteria of light chain myeloma or light chain MGRS.


2021 ◽  
Vol 22 (20) ◽  
pp. 10916
Author(s):  
Despina Fotiou ◽  
Foteini Theodorakakou ◽  
Efstathios Kastritis

Systemic AL amyloidosis is a rare complex hematological disorder caused by clonal plasma cells which produce amyloidogenic immunoglobulins. Outcome and prognosis is the combinatory result of the extent and pattern of organ involvement secondary to amyloid fibril deposition and the biology and burden of the underlying plasma cell clone. Prognosis, as assessed by overall survival, and early outcomes is determined by degree of cardiac dysfunction and current staging systems are based on biomarkers that reflect the degree of cardiac damage. The risk of progression to end-stage renal disease requiring dialysis is assessed by renal staging systems. Longer-term survival and response to treatment is affected by markers of the underlying plasma cell clone; the genetic background of the clonal disease as evaluated by interphase fluorescence in situ hybridization in particular has predictive value and may guide treatment selection. Free light chain assessment forms the basis of hematological response criteria and minimal residual disease as assessed by sensitive methods is gradually being incorporated into clinical practice. However, sensitive biomarkers that could aid in the early diagnosis and that could reflect all aspects of organ damage and disease biology are needed and efforts to identify them are continuous.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1348 ◽  
Author(s):  
Talha Badar ◽  
Anita D'Souza ◽  
Parameswaran Hari

Immunoglobulin (Ig) light chain (AL) amyloidosis is a clonal plasma cell disorder characterized by misfolded Ig light chain deposition in vital organs of the body, resulting in proteotoxicity and organ dysfunction. Owing to its diverse clinical presentations and a tendency to mimic common medical conditions, AL amyloidosis is often diagnosed late and results in dismal outcomes. Early referral to a specialized center with expertise in management of AL amyloidosis is always recommended. The availability of sensitive biomarkers and novel therapies is reforming our approach to how we manage AL amyloidosis. Treatment for patients with AL amyloidosis should be risk-adapted and customized on the basis of individual patient characteristics. In the future, approaches directed at amyloid fibril clearance in combination with agents that target plasma cells will be needed both to eradicate the malignant clone and to establish organ responses.


Sign in / Sign up

Export Citation Format

Share Document