scholarly journals Comparative Proteomics Analysis of Mouse Habu Nephritis Models with and without Unilateral Nephrectomy

2016 ◽  
Vol 39 (5) ◽  
pp. 1761-1776 ◽  
Author(s):  
Lei Chen ◽  
Yang Lu ◽  
Jun Wen ◽  
Xu Wang ◽  
Lingling Wu ◽  
...  

Background/Aims: Individuals possessing a single kidney are at greater risk of renal injury upon exposure to harmful stimuli. This study aimed to explore the pathogenesis of renal injury in glomerulonephritis with versus without unilateral nephrectomy (UNX). Methods: Histological analysis and label-free quantitative proteomics were performed on two models—the Habu snake venom-induced glomerulonephritis model with versus without UNX (HabuU and Habu models, respectively). The role of villin 1, a differentially expressed protein (DEP) in mouse mesangial cells, was investigated. Results: Persistent mesangiolysis and focal hypercellularity together with reduced activation of cell proliferation in the HabuU model induced more serious renal injury compared with that in the Habu model. The DEPs between the two models were identified by label-free liquid chromatography-mass spectrometry. The KEGG pathway results indicated that regulation of actin cytoskeleton and focal adhesion were specifically enriched in the HabuU model. The cytoskeleton regulation protein villin 1 was downregulated in the HabuU model, but unchanged in the Habu model. Knockdown of villin 1 promoted apoptosis and inhibited the proliferation of mouse mesangial cells, suggesting villin 1 to be involved in qlomerular lesion self-repair insufficiency. Conclusion: By assessing the proteomic profiles of the two models, this study identified several important differences, particularly villin 1 expression, in regulatory mechanisms between the two models. Our findings provide novel insight into the mechanism of serious renal injury in glomerulonephritis with UNX.

2019 ◽  
Vol 203 ◽  
pp. 103379 ◽  
Author(s):  
Ping Wu ◽  
Qi Shang ◽  
Haoling Huang ◽  
Shaolun Zhang ◽  
Jinbo Zhong ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Dongming Wu ◽  
Xiaopeng Wang ◽  
Ye Han ◽  
Yayun Wang

Abstract Background Recent studies have shown that lipocalin-2 (LCN2) has multiple functions involved in various biological and pathological processes including energy homeostasis, cancer, inflammation, and apoptosis. We aimed to investigate the effect of LCN2 on apoptosis that influences the pathogenetic process of metabolic diseases and cancer. Methods We performed a proteomics analysis of livers taken from LCN2-knockout mice and wild type mice by using label-free LC-MS/MS quantitative proteomics. Results Proteomic analysis revealed that there were 132 significantly differentially expressed proteins (49 upregulated and 83 downregulated) among 2140 proteins in the liver of LCN2-knockout mice compared with wild type mice. Of these, seven apoptosis-associated proteins were significantly upregulated and seven apoptosis-associated proteins downregulated. Conclusion Proteomics demonstrated that there were seven upregulated and seven downregulated apoptosis-associated proteins in liver of LCN2-knockout mice. It is important to clarify the effect of LCN2 on apoptosis that might contribute to the pathogenesis of insulin resistance, cancer, and various nervous system diseases.


2020 ◽  
Vol 134 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Jianyong Yin ◽  
Xuanchen Liu ◽  
Ting Zhao ◽  
Rulian Liang ◽  
Rui Wu ◽  
...  

Abstract Renalase, a recently discovered secreted flavoprotein, exerts anti-apoptotic and anti-inflammatory effects against renal injury in acute and chronic animal models. However, whether Renalase elicits similar effects in the development of diabetic nephropathy (DN) remains unclear. The studies presented here tested the hypothesis that Renalase may play a key role in the development of DN and may have therapeutic potential for DN. Renalase expression was measured in human kidney biopsies with DN and in kidneys of db/db mice. The role of Renalase in the development of DN was examined using a genetically engineered mouse model: Renalase knockout mice with db/db background. The renoprotective effects of Renalase in DN was evaluated in db/db mice with Renalase overexpression. In addition, the effects of Renalase on high glucose-induced mesangial cells were investigated. Renalase was down-regulated in human diabetic kidneys and in kidneys of db/db mice compared with healthy controls or db/m mice. Renalase homozygous knockout increased arterial blood pressure significantly in db/db mice while heterozygous knockout did not. Renalase heterozygous knockout resulted in elevated albuminuria and increased renal mesangial expansion in db/db mice. Mesangial hypertrophy, renal inflammation, and pathological injury in diabetic Renalase heterozygous knockout mice were significantly exacerbated compared with wild-type littermates. Moreover, Renalase overexpression significantly ameliorated renal injury in db/db mice. Mechanistically, Renalase attenuated high glucose-induced profibrotic gene expression and p21 expression through inhibiting extracellular regulated protein kinases (ERK1/2). The present study suggested that Renalase protected against the progression of DN and might be a novel therapeutic target for the treatment of DN.


2016 ◽  
Vol 7 ◽  
Author(s):  
Chidambareswaren Mahadevan ◽  
Anu Krishnan ◽  
Gayathri G. Saraswathy ◽  
Arun Surendran ◽  
Abdul Jaleel ◽  
...  

2018 ◽  
Vol 451 (1-2) ◽  
pp. 1-10 ◽  
Author(s):  
Abdul Jaleel ◽  
A. Aneesh Kumar ◽  
G. S. Ajith Kumar ◽  
Arun Surendran ◽  
Chandrashekaran C. Kartha

Sign in / Sign up

Export Citation Format

Share Document