scholarly journals Mir-144-3p Promotes Cell Proliferation, Metastasis, Sunitinib Resistance in Clear Cell Renal Cell Carcinoma by Downregulating ARID1A

2017 ◽  
Vol 43 (6) ◽  
pp. 2420-2433 ◽  
Author(s):  
Wen Xiao ◽  
Ning Lou ◽  
Hailong Ruan ◽  
Lin Bao ◽  
Zhiyong Xiong ◽  
...  

Background/Aims: We previously performed microRNA (miRNA) microarray to identify effective indicators of clear cell renal cell carcinoma (ccRCC) tissue samples and preoperative/postoperative plasma in which we identified miR-144-3p as an oncomiRNA. However, the molecular mechanism of miR-144-3p remains unclear. This study aims to explore the roles of miR-144-3p in the invasion, migration and Sunitinib-resistance in ccRCC and to elucidate the underlying mechanisms. Methods: Gain and loss of function approaches were used to investigate the cell proliferation, cycle distribution, clonogenicity, migration, invasion, chemosensitivity of miR-144-3p in vitro. The xenograft model was used to assess the effects of miR-144-3p overexpression on tumorigenesis. Bioinformatics analysis and dual-luciferase reporter assay were used to indentify AT-rich interactive domain 1A (ARID1A) as a direct target gene of miR-144-3p. Quantitative RT-PCR, Western blotting, and immunohistochemical (IHC) staining were used to explore ARID1A expression level of the mRNA and protein. Results: We found that miR-144-3p overexpression enhanced cell proliferation, clonogenicity, migration, invasion, and chemoresistance in ccRCC cells. Notably, the oncotumor activities of miR-144-3p were mediated by repressing the expression of ARID1A. The downregulation of ARIDIA could promote the function of miR-144-3p in cell proliferation, metastasis and chemoresistance. Consistently, ARID1A mRNA and protein levels were decreased in ccRCC and in nude mice, and they negatively correlated with miR-144-3p. Conclusion: Higher miR-144-3p may enhance malignancy and resistance to Sunitinib in ccRCC by targeting ARID1A, the observations may uncover novel strategies of ccRCC treatment.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhuo Ye ◽  
Jiachen Duan ◽  
Lihui Wang ◽  
Yanli Ji ◽  
Baoping Qiao

Abstract Background Clear cell renal cell carcinoma (ccRCC) is the most common renal cell carcinoma subtype with a poor prognosis. LncRNA-LET is a long non-coding RNA (lncRNA) that is down-regulated in ccRCC tissues. However, its role in ccRCC development and progress is unclear. Methods LncRNA-LET expression was detected in ccRCC tissues and ccRCC cells using quantitative real-time PCR. The overexpression and knockdown experiments were performed in ccRCC cells and xenograft mouse model to evaluate role of lncRNA-LET. Cell cycle, apoptosis and JC-1 assays were conducted via flow cytometer. The protein levels were measured through western blot analysis and the interaction between lncRNA-LET and miR-373-3p was identified via luciferase reporter assay. Results LncRNA-LET expression was lower in ccRCC tissues than that in the matched adjacent non-tumor tissues (n = 16). In vitro, lncRNA-LET overexpression induced cell cycle arrest, promoted apoptosis and impaired mitochondrial membrane potential, whereas its knockdown exerted opposite effects. Moreover, we noted that lncRNA-LET may act as a target for oncomiR miR-373-3p. In contrast to lncRNA-LET, miR-373-3p expression was higher in ccRCC tissues. The binding between lncRNA-LET and miR-373-3p was validated. Two downstream targets of miR-373-3p, Dickkopf-1 (DKK1) and tissue inhibitor of metalloproteinase-2 (TIMP2), were positively regulated by lncRNA-LET in ccRCC cells. MiR-373-3p mimics reduced lncRNA-LET-induced up-regulation of DKK1 and TIMP2 levels, and attenuated lncRNA-LET-mediated anti-tumor effects in ccRCC cells. In vivo, lncRNA-LET suppressed the growth of ccRCC xenograft tumors. Conclusion These findings indicate that lncRNA-LET plays a tumor suppressive role in ccRCC by regulating miR-373-3p.


Science ◽  
2018 ◽  
Vol 361 (6399) ◽  
pp. 290-295 ◽  
Author(s):  
Jing Zhang ◽  
Tao Wu ◽  
Jeremy Simon ◽  
Mamoru Takada ◽  
Ryoichi Saito ◽  
...  

Inactivation of the von Hippel-Lindau (VHL) E3 ubiquitin ligase protein is a hallmark of clear cell renal cell carcinoma (ccRCC). Identifying how pathways affected by VHL loss contribute to ccRCC remains challenging. We used a genome-wide in vitro expression strategy to identify proteins that bind VHL when hydroxylated. Zinc fingers and homeoboxes 2 (ZHX2) was found as a VHL target, and its hydroxylation allowed VHL to regulate its protein stability. Tumor cells from ccRCC patients with VHL loss-of-function mutations usually had increased abundance and nuclear localization of ZHX2. Functionally, depletion of ZHX2 inhibited VHL-deficient ccRCC cell growth in vitro and in vivo. Mechanistically, integrated chromatin immunoprecipitation sequencing and microarray analysis showed that ZHX2 promoted nuclear factor κB activation. These studies reveal ZHX2 as a potential therapeutic target for ccRCC.


2020 ◽  
Vol 10 ◽  
Author(s):  
Mei-Fang Zhang ◽  
Qiu-Li Li ◽  
Yu-Feng Yang ◽  
Yun Cao ◽  
Chris Zhiyi Zhang

Formin-like (FMNL) proteins are responsible for cytoskeletal remodeling and have been implicated in the progression and spread of human cancers. Yet the clinical significance and biological function of FMNL1 in clear cell renal cell carcinoma (ccRCC) remain unclear. In this study, the expression of FMNL1 in ccRCC and its clinical value were determined by tissue microarray-based IHC and statistical analyses. The role of FMNL1 in ccRCC metastasis and the underlying mechanism were investigated via in vitro and in vivo models using gene regulation detection, ChIP, Luciferase reporter assays, and rescue experiments. We show that FMNL1 is upregulated in ccRCC and exhibits pro-metastatic activity via induction of CXCR2. High expression of FMNL1 is significantly correlated with advanced tumor stage, higher pathological tumor grade, tumor metastasis, and unfavorable prognosis in two independent cohorts containing over 800 patients with ccRCC. The upregulation of FMNL1 in ccRCC is mediated by the loss of GATA3. Ectopic expression of FMNL1 promotes, whereas FMNL1 depletion inhibits cell migration in vitro and tumor metastasis in vivo. The FMNL1-enhanced cell mobility is markedly attenuated by the knockdown of CXCR2. Further studies demonstrate that FMNL1 increases the expression of CXCR2 via HDAC1. In clinical samples, FMNL1 expression is positively associated with CXCR2, and is negatively connected to GATA3 expression. Collectively, our data suggest FMNL1 serve as a potential prognostic factor and function as an oncogene. The axis of GATA3/FMNL1/CXCR2 may present a promising therapeutic target for tumor metastasis in ccRCC.


2020 ◽  
Author(s):  
Liang Cheng ◽  
Huifeng Cao ◽  
Jianbo Xu ◽  
Mo Xu ◽  
Wenjie He ◽  
...  

Abstract Background Clear cell renal cell carcinoma (CCRCC) is a prevalent urological carcinoma with high metastatic risk. Circular RNAs (circRNAs) have been identified as effective diagnostic and therapeutic biomarkers for CCRCC. This research aims to disclose the involvement of circRNA ribosomal protein L23a (circ_RPL23A) in CCRCC, and how it regulates carcinogenesis. Methods We performed quantitative real-time polymerase chain reaction (qRT-PCR) to examine circ_RPL23A, microRNA-1233 (miR-1233) and acetyl-coenzyme A acetyltransferase 2 (ACAT2). Cellular behavior detection included cell cycle, proliferation, apoptosis and metastasis, which were severally analyzed using propidium iodide (PI)-flow cytometry, 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT), Annexin V/PI-flow cytometry and transwell migration/invasion assays. ACAT2 and related proteins of cell cycle, epithelial-mesenchymal transition (EMT) were measured via western blot. Target relationship was analyzed via dual-luciferase reporter assay. A xenograft model was used to study circ_RPL23A action in mice. Results Both in CCRCC tissues and cells, circ_RPL23A had a down-regulated tendency. Explicitly, circ_RPL23A overexpression inhibited cell cycle, proliferation and metastasis but enhanced apoptosis of CCRCC cells, whereas these effects of circ_RPL23A were dependent on the suppression of its target miR-1233. Besides, miR-1233 could target ACAT2 and circ_RPL23A regulated ACAT2 by sponging miR-1233. Also importantly, miR-1233 was a pro-cancer gene in CCRCC via targeting ACAT2. CCRCC tumor growth was also decreased in vivo by circ_RPL23A through miR-1233/ACAT2 axis. Conclusion Altogether, the circ_RPL23A/miR-1233/ACAT2 axis in this report provides an in-depth cognition for CCRCC pathogenesis and circ_RPL23A may has pivotal value in diagnosing and treating CCRCC.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7040
Author(s):  
Xiaoguang Zhou ◽  
Bowen Zeng ◽  
Yansheng Li ◽  
Haozhou Wang ◽  
Xiaodong Zhang

Background: Studies have shown that long non-coding RNAs (lncRNAs) play essential roles in tumor progression and can affect the response to radiotherapy, including in clear cell renal cell carcinoma (ccRCC). LINC02532 has been found to be upregulated in ccRCC. However, not much is known about this lncRNA. Hence, this study aimed to investigate the role of LINC02532 in ccRCC, especially in terms of radioresistance. Methods: Quantitative real-time PCR was used to detect the expression of LINC02532, miR-654-5p, and YY1 in ccRCC cells. Protein levels of YY1, cleaved PARP, and cleaved-Caspase-3 were detected by Western blotting. Cell survival fractions, viability, and apoptosis were determined by clonogenic survival assays, CCK-8 assays, and flow cytometry, respectively. The interplay among LINC02532, miR-654-5p, and YY1 was detected by chromatin immunoprecipitation and dual-luciferase reporter assays. In addition, in vivo xenograft models were established to investigate the effect of LINC02532 on ccRCC radioresistance in 10 nude mice. Results: LINC02532 was highly expressed in ccRCC cells and was upregulated in the cells after irradiation. Moreover, LINC02532 knockdown enhanced cell radiosensitivity both in vitro and in vivo. Furthermore, YY1 activated LINC02532 in ccRCC cells, and LINC02532 acted as a competing endogenous RNA that sponged miR-654-5p to regulate YY1 expression. Rescue experiments indicated that miR-654-5p overexpression or YY1 inhibition recovered ccRCC cell functions that had been previously impaired by LINC02532 overexpression. Conclusions: Our results revealed a positive feedback loop of LINC02532/miR-654-5p/YY1 in regulating the radiosensitivity of ccRCC, suggesting that LINC02532 might be a potential target for ccRCC radiotherapy. This study could serve as a foundation for further research on the role of LINC02532 in ccRCC and other cancers.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Dingwei Xue ◽  
Huan Wang ◽  
Yuanlei Chen ◽  
Danyang Shen ◽  
Jieyang Lu ◽  
...  

Abstract Background Circular RNA (circRNA) is a type of circular endogenous RNA produced by special selective splicing and participates in progression of diverse diseases. However, the role of circRNA in clear cell renal cell carcinoma (ccRCC) is still rarely reported. Methods We detected lower circ-AKT3 expression in ccRCC using the circular RNA microarray. Then, qPCR array was applied to verify the expression of circ-AKT3 in between 60 ccRCC tissues and adjacent normal tissues, as well as ccRCC cell lines and human normal kidney cell (HK-2). We investigated the function of circ-AKT3 in ccRCC in vitro and in vivo and detected underlying mechanisms by Western blotting, bioinformatic analysis, RNA pull-down assay and luciferase reporter assay. Results Circ-AKT3 was verified significantly downregulated in ccRCC. Knockdown of circ-AKT3 promoted ccRCC migration and invasion, while overexpression of circ-AKT3 suppressed ccRCC metastasis. Further, circ-AKT3/miR-296-3p/E-cadherin axis was shown responsible for circ-AKT3 inhibiting ccRCC metastasis. Conclusion Circ-AKT3 suppresses ccRCC metastasis by enforcing E-cadherin expression through competitively binding miR-296-3p. Circ-AKT3 may therefore serve as a novel therapeutic to better suppress ccRCC metastasis.


2020 ◽  
Author(s):  
Liang Cheng ◽  
Huifeng Cao ◽  
Jianbo Xu ◽  
Mo Xu ◽  
Wenjie He ◽  
...  

Abstract Background Clear cell renal cell carcinoma (CCRCC) is a prevalent urological carcinoma with high metastatic risk. Circular RNAs (circRNAs) have been identified as effective diagnostic and therapeutic biomarkers for CCRCC. This research aims to disclose the involvement of circRNA ribosomal protein L23a (circ_RPL23A) in CCRCC, and how it regulates carcinogenesis. Methods We performed quantitative real-time polymerase chain reaction (qRT-PCR) to examine circ_RPL23A, microRNA-1233 (miR-1233) and acetyl-coenzyme A acetyltransferase 2 (ACAT2). Cellular behavior detection included cell cycle, proliferation, apoptosis and metastasis, which were severally analyzed using propidium iodide (PI)-flow cytometry, 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT), Annexin V/PI-flow cytometry and transwell migration/invasion assays. ACAT2 and related proteins of cell cycle, epithelial-mesenchymal transition (EMT) were measured via western blot. Target relationship was analyzed via dual-luciferase reporter assay. A xenograft model was used to study circ_RPL23A action in mice. Results Both in CCRCC tissues and cells, circ_RPL23A had a down-regulated tendency. Explicitly, circ_RPL23A overexpression inhibited cell cycle, proliferation and metastasis but enhanced apoptosis of CCRCC cells, whereas these effects of circ_RPL23A were dependent on the suppression of its target miR-1233. Besides, miR-1233 could target ACAT2 and circ_RPL23A regulated ACAT2 by sponging miR-1233. Also importantly, miR-1233 was a pro-cancer gene in CCRCC via targeting ACAT2. CCRCC tumor growth was also decreased in vivo by circ_RPL23A through miR-1233/ACAT2 axis. Conclusion Altogether, the circ_RPL23A/miR-1233/ACAT2 axis in this report provides an in-depth cognition for CCRCC pathogenesis and circ_RPL23A may has pivotal value in diagnosing and treating CCRCC.


Oncogene ◽  
2021 ◽  
Author(s):  
Ming-xiao Zhang ◽  
Li-zhen Zhang ◽  
Liang-min Fu ◽  
Hao-hua Yao ◽  
Lei Tan ◽  
...  

AbstractLong noncoding RNAs (lncRNAs) have been reported to exert important roles in tumors, including clear cell renal cell carcinoma (ccRCC). PVT1 is an important oncogenic lncRNA which has critical effects on onset and development of various cancers, however, the underlying mechanism of PVT1 functioning in ccRCC remains largely unknown. VHL deficiency-induced HIF2α accumulation is one of the major factors for ccRCC. Here, we identified the potential molecular mechanism of PVT1 in promoting ccRCC development by stabilizing HIF2α. PVT1 was significantly upregulated in ccRCC tissues and high PVT1 expression was associated with poor prognosis of ccRCC patients. Both gain-of-function and loss-of function experiments revealed that PVT1 enhanced ccRCC cells proliferation, migration, and invasion and induced tumor angiogenesis in vitro and in vivo. Mechanistically, PVT1 interacted with HIF2α protein and enhanced its stability by protecting it from ubiquitination-dependent degradation, thereby exerting its biological significance. Meanwhile, HIF2α bound to the enhancer of PVT1 to transactivate its expression. Furthermore, HIF2α specific inhibitor could repress PVT1 expression and its oncogenic functions. Therefore, our study demonstrates that the PVT1/ HIF2α positive feedback loop involves in tumorigenesis and progression of ccRCC, which may be exploited for anticancer therapy.


2021 ◽  
Vol 350 ◽  
pp. S107
Author(s):  
F.S. Amaro ◽  
J. Pinto ◽  
S. Rocha ◽  
A.M. Araújo ◽  
V.M. Gonçalves ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document