scholarly journals Increased Th1/Th17 Responses Contribute to Low-Grade Inflammation in Age-Related Macular Degeneration

2017 ◽  
Vol 44 (1) ◽  
pp. 357-367 ◽  
Author(s):  
Jiajia Chen ◽  
Wenzhan Wang ◽  
Qiuming Li

Background/Aims: Age-related macular degeneration (AMD) is the primary cause of senior blindness in developed countries. Mechanisms underlying initiation and development of AMD remained known. Methods: We examined the CD4+ T cell compartments and their functions in AMD patients. Results: AMD patients presented significantly higher frequencies of interferon (IFN)-γ-expressing and interleukin (IL)-17-expressing CD4+ T cells than healthy controls. The levels of IFN-γ and IL-17 expression by CD4+ T cells were significantly higher in AMD patients. These IFN-γ-expressing Th1 cells and IL-17-expressing Th17 cells could be selectively enriched by surface CCR3+ and CCR4+CCR6+ expression, respectively. Th1 and Th17 cells from AMD patients promoted the differentiation of monocytes toward M1 macrophages, which were previously associated with retinal damage. Th1 and Th17 cells also increased the level of MHC class I expression in human retinal pigment epithelial (RPE)-1 cells, while Th1 cells increased the frequency of MHC class II-expressing RPE-1 cells. These proinflammatory effects were partly, but not entirely, induced by the secretion of IFN-γ and IL-17. Conclusions: This study demonstrated an enrichment of Th1 cells and Th17 cells in AMD patients. These Th1 and Th17 cells possessed proinflammatory roles in an IFN-γ- and IL-17-dependent fashion, and could potentially serve as therapeutic targets.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1340-1340 ◽  
Author(s):  
Shahram Y Kordasti ◽  
Judith C. W. Marsh ◽  
Sufyan Al-Khan ◽  
Jie Jiang ◽  
Alexander E Smith ◽  
...  

Abstract Abstract 1340 We have examined the role of CD4+ T-cells in the pathogenesis of AA in 63 patients, 48 of whom were analyzed at diagnosis and 15 following immunosuppressive therapy (IST). Absolute numbers of CD4+ regulatory T cells (Tregs, defined as CD3+CD4+CD25highCD27+Foxp3+) were lower in pre-treatment AA patients compared to 10 healthy donors (HDs) (5.5 × 106 v 1.4 × 107)(p=0.01). In patients with severe (SAA) and very severe AA (VSAA), the absolute number and frequency of Tregs were lower than non-severe AA (NSAA) (4.4 × 106/L v 1 × 107/L)(p=0.01) and HDs (4.4 × 106/L v 3 × 107/L) (p<0.001). Absolute numbers of Th1 and Th2 cells in all pre-treatment patients were higher compared to HDs (6.4 × 107/L v 1.8 × 107/L)(p=0.03) for Th1 and (2.6 × 107/L v 2.4 × 106/L)(p=0.006) Th2 cells. Although mean percentages of AA Th17 cells were higher than in HDs (1.5% v 0.15%)(p=0.04), differences in absolute numbers were not significant. Absolute numbers of Th2 and Th17 cells were increased in SAA (1.3 × 107/L v 7.4 × 106/L for Th2)(p=0.01) compared to NSAA (5.7 × 106/L v 2.15 × 106/L for Th17)(p=0.02). Ratios of Th1/Tregs (p=0.003), Th2/Tregs (p=0.02), and Th17/Tregs (p=0.001) were higher in SAA and VSAA compared to NSAA. Percentage of both activated (CD4+CD45RA−CD25highFoxp3high) and resting (CD4+CD45RA+ CD25highFoxp3low) Tregs was decreased in AA patients, compared to HDs (p=0.004 and p=0.01), whereas cytokine secreting Tregs (CD4+CD45RA−CD25high Foxp3low) were increased in AA (p<0.003). Sorted Tregs from AA patients did not suppress cytokine secretion by autologous or HD T effectors (Te) cells in 1:1 co-cultures, whereas IL-2 and IFN-γ secretion by AA Te (CD4+CD25lowCD127high) was suppressible by allogeneic Tregs from HDs, confirming Tregs dysfunction. AA Tregs did not inhibit either CD154 or CD69 expression on Te cells. Tregs from AA patients secreted significantly more IFN-γ, TNF-α and IL-17 (p=0.02, p=0.02 and p=0.01, respectively) after 4 hours stimulation with PMA/Ionomycine compared to HDs. Expression levels of FoxP3, ROR□c and T-bet in AA Tregs was normal. IFN-γ secreting cells (Th1) were enriched using enrichment kit then further enriched by FACS sorting. CDR3 region products of TCR Vβ-chain were amplified using Vβ specific forward and Cβ reverse primers. CDR3 PCR products from AA patients and HDs were subjected 454 sequencing (Roche GS FLX titanium). Sequencing was performed to yield an average ‘depth’ in excess of 1000 clonally reads (1000x) for each sample specific CDR3 PCR amp icon. Reads were processed using Roche Amp icon Variant Analyzer software (AVA). Diversity of TCR receptors (measured by spectratyping and confirmed by high throughput deep sequencing) in AA Th1 cells was lower than HDs (p=0.037), as shown by the percentage and number of consensus clusters in total sequence reads. Interestingly, percentages of the most dominant CDR3 clones, revealed by high throughput sequencing, were higher in AA compared to HDs, regardless of spectratyping pattern. Global gene expression of Tregs was compared in 3 pre-IST AA patients and 5 HDs. A unique gene signature consisting of 86 genes that were significant was identified. There were 8 down regulated genes (fold change) in the pre-treatment group; PIN4 (−4.1), OR2T12 (−3.3), AMAC1 (−2.73), PERP (−2.69), UTS2 (−2.27), RNF139 (−2.13), COMMD9 (−2.09) and LOC100128356 (−2.01). The top 10 of 78 up-regulated genes in the pre-treatment group were HBB (19.5), PSME2 (13.8), CSDA (13.07), FAM127A (7.78), EXOSC1 (7.73), BPGM (7.43), CYSLTR1 (7.17), CHPT1 (6.96) and PLAC8 (6.71). qPCR analysis for CSDA, HBB, PSMiE2, PERP, PIN4, and UTS2 confirmed a similar trend to the microarray results. Interestingly absolute number of Tregs, and Th2/Treg ratio were higher in 10 IST responsive patients compared to 5 non-responsive patients (p=0.005 and 0.02, respectively). We show that expansion of Th1, Th2, Th17, and decreased/skewed Tregs immunophenotype and function are a consistent and defining feature of SAA and VSAA. Clonal expansion of Th1 cells is likely to be antigen driven and the presence of dysfunctional Tregs aggravates this autoimmune response. Increases of Tregs, and Th2/Treg ratios following IST predicts a favourable response to this treatment. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Serge Camelo

Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly throughout the industrialized world. Its most prominent pathologic features are lesions involving the retinal pigment epithelium (RPE) the Bruch’s membrane, the degeneration of photoreceptors, and, in the most aggressive cases, choroidal neovascularization. Genetic associations between the risk of developing AMD and polymorphism within components of the complement system, as well as chemokine receptors expressed on microglial cells and macrophages, have linked retinal degeneration and choroidal neovascularization to innate immunity (inflammation). In addition to inflammation, players of the adaptive immunity including cytokines, chemokines, antibodies, and T cells have been detected in animal models of AMD and in patients suffering from this pathology. These observations suggest that adaptive immunity might play a role in different processes associated with AMD such as RPE atrophy, neovascularization, and retinal degeneration. To this date however, the exact roles (if any) of autoantibodies and T cells in AMD remain unknown. In this review we discuss the potential effects of adaptive immune responses in AMD pathogenesis.


2021 ◽  
Vol 6 (1) ◽  
pp. e000774
Author(s):  
Minwei Wang ◽  
Shiqi Su ◽  
Shaoyun Jiang ◽  
Xinghuai Sun ◽  
Jiantao Wang

Age-related macular degeneration (AMD) is the most common eye disease in elderly patients, which could lead to irreversible vision loss and blindness. Increasing evidence indicates that amyloid β-peptide (Aβ) might be associated with the pathogenesis of AMD. In this review, we would like to summarise the current findings in this field. The literature search was done from 1995 to Feb, 2021 with following keywords, ‘Amyloid β-peptide and age-related macular degeneration’, ‘Inflammation and age-related macular degeneration’, ‘Angiogenesis and age-related macular degeneration’, ‘Actin cytoskeleton and amyloid β-peptide’, ‘Mitochondrial dysfunction and amyloid β-peptide’, ‘Ribosomal dysregulation and amyloid β-peptide’ using search engines Pubmed, Google Scholar and Web of Science. Aβ congregates in subretinal drusen of patients with AMD and participates in the pathogenesis of AMD through enhancing inflammatory activity, inducing mitochondrial dysfunction, altering ribosomal function, regulating the lysosomal pathway, affecting RNA splicing, modulating angiogenesis and modifying cell structure in AMD. The methods targeting Aβ are shown to inhibit inflammatory signalling pathway and restore the function of retinal pigment epithelium cells and photoreceptor cells in the subretinal region. Targeting Aβ may provide a novel therapeutic strategy for AMD.


2021 ◽  
Vol 22 (13) ◽  
pp. 6800
Author(s):  
Maria Hytti ◽  
Eveliina Korhonen ◽  
Heidi Hongisto ◽  
Kai Kaarniranta ◽  
Heli Skottman ◽  
...  

Inflammation is a key underlying factor of age-related macular degeneration (AMD) and inflammasome activation has been linked to disease development. Induced pluripotent stem-cell-derived retinal pigment epithelial cells (iPSC-RPE) are an attractive novel model system that can help to further elucidate disease pathways of this complex disease. Here, we analyzed the effect of dysfunctional protein clearance on inflammation and inflammasome activation in iPSC-RPE cells generated from a patient suffering from age-related macular degeneration (AMD) and an age-matched control. We primed iPSC-RPE cells with IL-1α and then inhibited both proteasomal degradation and autophagic clearance using MG-132 and bafilomycin A1, respectively, causing inflammasome activation. Subsequently, we determined cell viability, analyzed the expression levels of inflammasome-related genes using a PCR array, and measured the levels of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and MCP-1 secreted into the medium. Cell treatments modified the expression of 48 inflammasome-related genes and increased the secretion of mature IL-1β, while reducing the levels of IL-6 and MCP-1. Interestingly, iPSC-RPE from an AMD donor secreted more IL-1β and expressed more Hsp90 prior to the inhibition of protein clearance, while MCP-1 and IL-6 were reduced at both protein and mRNA levels. Overall, our results suggest that cellular clearance mechanisms might already be dysfunctional, and the inflammasome activated, in cells with a disease origin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Donita L. Garland ◽  
Eric A. Pierce ◽  
Rosario Fernandez-Godino

AbstractThe complement system plays a role in the formation of sub-retinal pigment epithelial (RPE) deposits in early stages of age-related macular degeneration (AMD). But the specific mechanisms that connect complement activation and deposit formation in AMD patients are unknown, which limits the development of efficient therapies to reduce or stop disease progression. We have previously demonstrated that C3 blockage prevents the formation of sub-RPE deposits in a mouse model of EFEMP1-associated macular degeneration. In this study, we have used double mutant Efemp1R345W/R345W:C5-/- mice to investigate the role of C5 in the formation of sub-RPE deposits in vivo and in vitro. The data revealed that the genetic ablation of C5 does not eliminate the formation of sub-RPE deposits. Contrarily, the absence of C5 in RPE cultures promotes complement dysregulation that results in increased activation of C3, which likely contributes to deposit formation even in the absence of EFEMP1-R345W mutant protein. The results also suggest that genetic ablation of C5 alters the extracellular matrix turnover through an effect on matrix metalloproteinases in RPE cell cultures. These results confirm that C3 rather than C5 could be an effective therapeutic target to treat early AMD.


2021 ◽  
Vol 22 (16) ◽  
pp. 8387
Author(s):  
Alexa Klettner ◽  
Johann Roider

(1) Background: Inflammation is a major pathomechanism in the development and progression of age-related macular degeneration (AMD). The retinal pigment epithelium (RPE) may contribute to retinal inflammation via activation of its Toll-like receptors (TLR). TLR are pattern recognition receptors that detect the pathogen- or danger-associated molecular pattern. The involvement of TLR activation in AMD is so far not understood. (2) Methods: We performed a systematic literature research, consulting the National Library of Medicine (PubMed). (3) Results: We identified 106 studies, of which 54 were included in this review. Based on these studies, the current status of TLR in AMD, the effects of TLR in RPE activation and of the interaction of TLR activated RPE with monocytic cells are given, and the potential of TLR activation in RPE as part of the AMD development is discussed. (4) Conclusion: The activation of TLR2, -3, and -4 induces a profound pro-inflammatory response in the RPE that may contribute to (long-term) inflammation by induction of pro-inflammatory cytokines, reducing RPE function and causing RPE cell degeneration, thereby potentially constantly providing new TLR ligands, which could perpetuate and, in the long run, exacerbate the inflammatory response, which may contribute to AMD development. Furthermore, the combined activation of RPE and microglia may exacerbate neurotoxic effects.


Sign in / Sign up

Export Citation Format

Share Document