scholarly journals Downregulation of the Cl-/HCO3-Exchanger Pendrin in Kidneys of Mice with Cystic Fibrosis: Role in the Pathogenesis of Metabolic Alkalosis

2018 ◽  
Vol 45 (4) ◽  
pp. 1551-1565 ◽  
Author(s):  
Mujan Varasteh Kia ◽  
Sharon Barone ◽  
Alicia A. McDonough ◽  
Kamyar Zahedi ◽  
Jie Xu ◽  
...  

Background/Aims: Patients with cystic fibrosis (CF) are prone to the development of metabolic alkalosis; however, the pathogenesis of this life threatening derangement remains unknown. We hypothesized that altered acid base transport machinery in the kidney collecting duct underlies the mechanism of impaired bicarbonate elimination in the CF kidney. Methods: Balance studies in metabolic cages were performed in WT and CFTR knockout (CF) mice with the intestinal rescue in response to bicarbonate loading or salt restriction, and the expression levels and cellular distribution of acid base and electrolyte transporters in the proximal tubule, collecting duct and small intestine were examined by western blots, northern blots and/or immunofluorescence labeling. Results: Baseline parameters, including acid-base and systemic vascular volume status were comparable in WT and CF mice, as determined by blood gas, kidney renin expression and urine chloride excretion. Compared with WT animals, CF mice demonstrated a significantly higher serum HCO3- concentration (22.63 in WT vs. 26.83 mEq/l in CF mice; n=4, p=0.013) and serum pH (7.33 in WT vs. 7.42 in CF mice; n=4, p=0.00792) and exhibited impaired kidney HCO3- excretion (urine pH 8.10 in WT vs. 7.35 in CF mice; n=7, p=0.00990) following a 3-day oral bicarbonate load. When subjected to salt restriction, CF mice developed a significantly higher serum HCO3- concentration vs. WT animals (29.26 mEq/L in CF mice vs. 26.72 in WT; n=5, p=0.0291). Immunofluorescence labeling demonstrated a profound reduction in the apical expression of the Cl-/HCO3- exchanger pendrin in cortical collecting duct cells and western and northern blots indicated diminished plasma membrane abundance and mRNA expression of pendrin in CF kidneys. Conclusions: We propose that patients with cystic fibrosis are prone to the development of metabolic alkalosis secondary to the inactivation of the bicarbonate secreting transporter pendrin, specifically during volume depletion, which is a common occurrence in CF patients.

2011 ◽  
Vol 165 (1) ◽  
pp. 167-170 ◽  
Author(s):  
Narayanan Kandasamy ◽  
Laura Fugazzola ◽  
Mark Evans ◽  
Krishna Chatterjee ◽  
Fiona Karet

IntroductionPendred syndrome, a combination of sensorineural deafness, impaired organification of iodide in the thyroid and goitre, results from biallelic defects in pendrin (encoded by SLC26A4), which transports chloride and iodide in the inner ear and thyroid respectively. Recently, pendrin has also been identified in the kidneys, where it is found in the apical plasma membrane of non-α-type intercalated cells of the cortical collecting duct. Here, it functions as a chloride–bicarbonate exchanger, capable of secreting bicarbonate into the urine. Despite this function, patients with Pendred syndrome have not been reported to develop any significant acid–base disturbances, except a single previous reported case of metabolic alkalosis in the context of Pendred syndrome in a child started on a diuretic.Case reportWe describe a 46-year-old female with sensorineural deafness and hypothyroidism, who presented with severe hypokalaemic metabolic alkalosis during inter-current illnesses on two occasions, and who was found to be homozygous for a loss-of-function mutation (V138F) in SLC26A4. Her acid–base status and electrolytes were unremarkable when she was well.ConclusionThis case illustrates that, although pendrin is not usually required to maintain acid–base homeostasis under ambient condition, loss of renal bicarbonate excretion by pendrin during a metabolic alkalotic challenge may contribute to life-threatening acid–base disturbances in patients with Pendred syndrome.


2003 ◽  
Vol 284 (1) ◽  
pp. F103-F112 ◽  
Author(s):  
Snezana Petrovic ◽  
Zhaohui Wang ◽  
Liyun Ma ◽  
Manoocher Soleimani

Pendrin is an apical Cl−/OH−/HCO[Formula: see text] exchanger in β-intercalated cells (β-ICs) of rat and mouse cortical collecting duct (CCD). However, little is known about its regulation in acid-base disorders. Here, we examined the regulation of pendrin in metabolic acidosis, a condition known to decrease HCO[Formula: see text]secretion in CCD. Rats were subjected to NH4Cl loading for 4 days, which resulted in metabolic acidosis. Apical Cl−/HCO[Formula: see text] exchanger activity in β-ICs was determined as amplitude and rate of intracellular pH change when Cl was removed in isolated, microperfused CCDs. Intracellular pH was measured by single-cell digital ratiometric imaging using fluorescent pH-sensitive dye 2′,7′-bis-(3-carboxypropyl)-5-(and-6)-carboxyfluorescein-AM. Pendrin mRNA expression in kidney cortex was examined by Northern blot hybridizations. Expression of pendrin protein was assessed by indirect immunofluorescence. Microperfused CCDs isolated from acidotic rats demonstrated ∼60% reduction in apical Cl−/HCO[Formula: see text] exchanger activity in β-ICs ( P < 0.001 vs. control). Northern blot hybridizations indicated that the mRNA expression of pendrin in kidney cortex decreased by 68% in acidotic animals ( P < 0.02 vs. control). Immunofluorescence labeling demonstrated significant reduction in pendrin expression in CCDs of acidotic rats. We conclude that metabolic acidosis decreases the activity of the apical Cl−/HCO[Formula: see text] exchanger in β-ICs of the rat CCD by reducing the expression of pendrin. Adaptive downregulation of pendrin in metabolic acidosis indicates the important role of this exchanger in acid-base regulation in the CCD.


1990 ◽  
Vol 68 (8) ◽  
pp. 1119-1123 ◽  
Author(s):  
Lal C. Garg ◽  
Neelam Narang

Changes in systemic acid – base balance are known to influence acidification in the collecting duct. The H+ secretion in the collecting duct has been shown to be an electrogenic process and it has been suggested that an H-ATPase sensitive to inhibition by N-ethylmaleimide (NEM) is responsible for H+ secretion. This study was designed to determine the effect of metabolic alkalosis on NEM-sensitive ATPase activity in the microdissected segments of the distal nephron. Metabolic alkalosis was produced by giving NaHCO3 to normal rats for 7 days. The plasma total CO2 concentration in the experimental group was 31.5 ± 1.8 mM compared with 23.4 ± 1.0 mM in the control group. NEM-sensitive ATPase activity was significantly lower in the cortical collecting duct and in the outer and inner medullary collecting ducts of alkali-loaded rats than those of control rats. There was no significant difference in the enzyme activity between the two groups of animals in the other nephron segments examined. Our results suggest that NEM-sensitive H-APTase activity in all three segments of the collecting duct is modulated by the acid – base status of the animal.Key words: collecting duct, H-ATPase, electrogenic H-pump, metabolic alkalosis, rat kidney.


Author(s):  
Gertrude Arthur ◽  
Jeffrey L. Osborn ◽  
Frederique B. Yiannikouris

Prorenin receptor (PRR), a 350-amino acid receptor initially thought of as a receptor for the binding of renin and prorenin has been shown to be multifunctional. In addition to its role in the renin angiotensin system (RAS), PRR also transduces several intracellular signaling molecules and is a component of the vacuolar H+-ATPase that participates in autophagy. PRR is found in the kidney and particularly in great abundance in the cortical collecting duct. In the kidney, PRR participates in water and salt balance, acid-base balance, autophagy and plays a role in development and progression of hypertension, diabetic retinopathy, and kidney fibrosis. This review highlights the role of PRR in the development and function of the kidney namely the macula densa, podocyte, proximal and distal convoluted tubule and the principal cells of the collecting duct and focuses on PRR function in body fluid volume homeostasis, blood pressure regulation and acid-base balance. This review also explores new advances in the molecular mechanism involving PRR in normal renal health and pathophysiological states.


1998 ◽  
Vol 274 (3) ◽  
pp. F596-F601 ◽  
Author(s):  
Géza Fejes-Tóth ◽  
Erzsébet Rusvai ◽  
Emily S. Cleaveland ◽  
Anikó Náray-Fejes-Tóth

AE2 mRNA and protein is expressed in several nephron segments, one of which is the cortical collecting duct (CCD). However, the distribution of AE2 among the different cell types of the CCD and the function of AE2 in the kidney are not known. The purpose of this study was to determine the distribution of AE2 mRNA among the three CCD cell types and to examine the effects of changes in acid/base balance on its expression. Following NH4Cl (acid) or NaHCO3 (base) loading of rabbits for ∼18 h, CCD cells were isolated by immunodissection. AE2 mRNA levels were determined by RT-PCR and were normalized for β-actin levels. We found that CCD cells express high levels of AE2 mRNA (∼500 copies/cell). AE2 mRNA levels were significantly higher in CCD cells originating from base-loaded than acid-loaded rabbits, with an average increase of 3.7 ± 1.07-fold. The effect of pH on AE2 mRNA levels was also tested directly using primary cultures of CCD cells. CCD cells incubated in acidic media expressed significantly lower levels of AE2 mRNA than those in normal or alkaline media. Experiments with isolated principal cells, α-intercalated cells, and β-intercalated cells (separated by fluorescence-activated cell sorting) demonstrated that AE2 mRNA levels are comparable in the three collecting duct cell subtypes and are similarly regulated by changes in acid/base balance. Based on these results, we conclude that adaptation to changes in extracellular H+ concentration is accompanied by opposite changes in AE2 mRNA expression. The observations that AE2 mRNA is not expressed in a cell-type-specific manner and that changes in acid/base balance have similar effects on each CCD cell subtype suggest that AE2 might serve a housekeeping function rather than being the apical anion exchanger of β-intercalated cells.


2006 ◽  
Vol 291 (3) ◽  
pp. F683-F693 ◽  
Author(s):  
Zuhal Ergonul ◽  
Gustavo Frindt ◽  
Lawrence G. Palmer

Antibodies directed against subunits of the epithelial Na channel (ENaC) were used together with electrophysiological measurements in the cortical collecting duct to investigate the processing of the proteins in rat kidney with changes in Na or K intake. When animals were maintained on a low-Na diet for 7–9 days, the abundance of two forms of the α-subunit, with apparent masses of 85 and 30 kDa, increased. Salt restriction also increased the abundance of the β-subunit and produced an endoglycosidase H (Endo H)-resistant pool of this subunit. The abundance of the 90-kDa form of the γ-subunit decreased, whereas that of a 70-kDa form increased and this peptide also exhibited Endo H-resistant glycosylation. These changes in α- and γ-subunits were correlated with increases in Na conductance elicited by a 4-h infusion with aldosterone. Changes in all three subunits were correlated with decreases in Na conductance when Na-deprived animals drank saline for 5 h. We conclude that ENaC subunits are mainly in an immature form in salt-replete rats. With Na depletion, the subunits mature in a process that involves proteolytic cleavage and further glycosylation. Similar changes occurred in α- and γ- but not β-subunits when animals were treated with exogenous aldosterone, and in β- and γ- but not α-subunits when animals were fed a high-K diet. Changes in the processing and maturation of the channels occur rapidly enough to be involved in the daily regulation of ENaC activity and Na reabsorption by the kidney.


2011 ◽  
Vol 301 (4) ◽  
pp. F823-F832 ◽  
Author(s):  
Ki-Hwan Han ◽  
Hyun-Wook Lee ◽  
Mary E. Handlogten ◽  
Jesse M. Bishop ◽  
Moshe Levi ◽  
...  

Hypokalemia is a common electrolyte disorder that increases renal ammonia metabolism and can cause the development of an acid-base disorder, metabolic alkalosis. The ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg), are expressed in the distal nephron and collecting duct and mediate critical roles in acid-base homeostasis by facilitating ammonia secretion. In the current studies, the effect of hypokalemia on renal Rhbg and Rhcg expression was examined. Normal Sprague-Dawley rats received either K+-free or control diets for 2 wk. Rats receiving the K+-deficient diet developed hypokalemia and metabolic alkalosis associated with significant increases in both urinary ammonia excretion and urine pH. Rhcg expression increased in the outer medullary collecting duct (OMCD). In OMCD intercalated cells, hypokalemia resulted in more discrete apical Rhcg expression and a marked increase in apical plasma membrane immunolabel. In principal cells, in the OMCD, hypokalemia increased both apical and basolateral Rhcg immunolabel intensity. Cortical Rhcg expression was not detectably altered by immunohistochemistry, although there was a slight decrease in total expression by immunoblot analysis. Rhbg protein expression was decreased slightly in the cortex and not detectably altered in the outer medulla. We conclude that in rat OMCD, hypokalemia increases Rhcg expression, causes more polarized apical expression in intercalated cells, and increases both apical and basolateral expression in the principal cell. Increased plasma membrane Rhcg expression in response to hypokalemia in the rat, particularly in the OMCD, likely contributes to the increased ammonia excretion and thereby to the development of metabolic alkalosis.


1985 ◽  
Vol 249 (2) ◽  
pp. F205-F212 ◽  
Author(s):  
J. Garcia-Austt ◽  
D. W. Good ◽  
M. B. Burg ◽  
M. A. Knepper

To assess the role of cortical collecting duct bicarbonate secretion in the regulation of net acid excretion, we have sought to identify what factors influence the secretion rate. Net and unidirectional bicarbonate fluxes were measured in isolated perfused cortical collecting ducts from deoxycorticosterone-treated rabbits. The collecting ducts secreted bicarbonate at 11-24 pmol X mm-1 X min-1, confirming the high rate seen in earlier studies. Oral acid loading (50 mM NH4Cl drinking water) completely inhibited the net bicarbonate secretion. The bath-to-lumen flux was markedly reduced with acid loading, but the lumen-to-bath flux changed very little. In tubules from rabbits treated with deoxycorticosterone (but not NH4Cl), luminal chloride replacement with either sulfate or gluconate completely and reversibly inhibited the net bicarbonate secretion. The bath-to-lumen flux was greatly inhibited, but there was little change in the lumen-to-bath flux. We conclude: 1) High rates of bicarbonate secretion can be induced in rabbit cortical collecting ducts by chronic treatment of the animals with deoxycorticosterone. 2) When deoxycorticosterone-treated rabbits were made acidotic by oral administration of NH4Cl, the bicarbonate secretion was prevented, indicating that the systemic acid-base state of the animal may be an important factor regulating bicarbonate secretion. 3) Replacement of chloride in the lumen with sulfate inhibits bicarbonate secretion in the cortical collecting duct, an effect which may explain in part the decrease in urinary pH in response to sulfate infusions in mineralocorticoid-stimulated animals.


Author(s):  
Serge Brimioulle

Metabolic alkalosis occurs in up 51% of abnormal acid-base samples in the hospital. It is characterized by a primary increase in bicarbonate concentration and is always associated with chloride depletion. In critically-ill patients, it is most often generated by diuretic administration, digestive losses, alkali administration, or rapid correction of hypercapnia. Even after all causal factor are removed, it can be maintained by blood volume depletion and potassium depletion. Metabolic alkalosis results in hypercapnia, hypoxaemia, cardiac arrhythmias, altered consciousness, and neuromuscular hyperexcitability. It is first treated by removing the causal factors, whenever possible. Maintaining factors must be reversed by sodium chloride and/or potassium chloride administration. Acetazolamide and renal replacement therapy, when given for specific indications, can also correct the alkalosis. Lysine and arginine chloride are no longer used. If metabolic alkalosis is severe or when other treatments are contraindicated or ineffective, hydrochloric acid infusion is useful. Dilute hydrochloric acid can be infused safely, provided adequate precautions are taken to prevent extravascular leakage, vessel damage, and tissue necrosis.


1994 ◽  
Vol 266 (4) ◽  
pp. F528-F535 ◽  
Author(s):  
C. Emmons ◽  
J. B. Stokes

HCO3- secretion by cortical collecting duct (CCD) occurs via beta-intercalated cells. In vitro CCD HCO3- secretion is modulated by both the in vivo acid-base status of the animal and by adenosine 3',5'-cyclic monophosphate (cAMP). To investigate the mechanism of cAMP-induced HCO3- secretion, we measured intracellular pH (pHi) of individual beta-intercalated cells of CCDs dissected from alkali-loaded rabbits perfused in vitro. beta-Intercalated cells were identified by demonstrating the presence of an apical anion exchanger (cell alkalinization in response to removal of lumen Cl-). After 180 min of perfusion to permit decrease of endogenous cAMP, acute addition of 0.1 mM 8-bromo-cAMP or 1 microM isoproterenol to the bath caused a transient cellular alkalinization (> 0.20 pH units). In the symmetrical absence of either Na+, HCO3-, or Cl-, cAMP produced no change in pHi. Basolateral dihydrogen 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (0.1 mM) for 15 min before cAMP addition also prevented this alkalinization. In contrast to the response of cells from alkali-loaded rabbits, addition of basolateral cAMP to CCDs dissected from normal rabbits resulted in an acidification of beta-intercalated cells (approximately 0.20 pH units). The present studies demonstrate the importance of the in vivo acid-base status of the animal in the regulation of CCD HCO3- secretion by beta-intercalated cells. The results identify the possible existence of a previously unrecognized Na(+)-dependent Cl-/HCO3- exchanger on the basolateral membrane of beta-intercalated cells in alkali-loaded rabbits.


Sign in / Sign up

Export Citation Format

Share Document