scholarly journals Progressive Degeneration and Inhibition of Peripheral Nerve Regeneration in the SOD1-G93A Mouse Model of Amyotrophic Lateral Sclerosis

2018 ◽  
Vol 46 (6) ◽  
pp. 2358-2372 ◽  
Author(s):  
Binbin Deng ◽  
Wenjing Lv ◽  
Weisong Duan ◽  
Yakun Liu ◽  
Zhongyao Li ◽  
...  

Background: Myelination, degeneration and regeneration are implicated in crucial responses to injury in the peripheral nervous system. Considering the progression of amyotrophic lateral sclerosis (ALS), we used the superoxide dismutase 1 (SOD1)-G93A transgenic mouse model of ALS to investigate the effects of mutant SOD1 on the peripheral nerves. Methods: Changes in peripheral nerve morphology were analyzed in SOD1 mutant mice at various stages of the disease by toluidine blue staining and electron microscopy (EM). Schwann cell proliferation and recruitment of inflammatory factors were detected by immunofluorescence staining and quantitative reverse transcription PCR and were compared between SOD1 mutant mice and control mice. Furthermore, western blotting (WB) and TUNEL staining were used to investigate axonal damage and Schwann cell survival in the sciatic nerves of mice in both groups. Results: An analysis of the peripheral nervous system in SOD1-G93A mice revealed the following novel features: (i) Schwann cells and axons in mutant mice underwent changes that were similar to those seen in the control mice during the early development of peripheral nerves. (ii) The peripheral nerves of SOD1-G93A mice developed progressive neuropathy, which presented as defects in axons and myelin, leading to difficulty in walking and reduced locomotor capacity at a late stage of the disease. (iii) Macrophages were recruited and accumulated, and nerve injury and a deficit in the blood-nerve barrier were observed. (iv) Proliferation and the inflammatory micro-environment were inhibited, which impaired the regeneration and remyelination of axons after crush injury in the SOD1-G93A mice. Conclusions: The mutant human SOD1 protein induced axonal and myelin degeneration during the progression of ALS and participated in axon remyelination and regeneration in response to injury.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 37-37
Author(s):  
Kristin Komnick ◽  
Jennifer May ◽  
Pouneh Kermani ◽  
Sreemanti Basu ◽  
Irene Hernandez ◽  
...  

Blood cell production is regulated by peripheral nerve fibers that innervate the bone marrow. However, little is known about the development or maintenance of hematopoietic innervation. Schwann cells (SCs) are the primary axon 'support cells' of the peripheral nervous system (PNS), and abnormal SC development is sufficient to impair peripheral nerve function. SCs are also the primary repair cell for the PNS which makes them an attractive therapeutic target for normalization of drug or malignancy-induced 'hematopoietic neuropathy'. We hypothesized that neural regulation of hematopoiesis is dependent on SC development. To test this hypothesis, we used the Myelin Protein Zero-Cre (MP0-Cre); Lamc1fl/fl mouse line in which laminin-γ1 expression is deleted from SC precursors and their progeny1. Early SC maturation is dependent on autocrine SC precursor-derived molecules such as laminin-γ1. SC differentiation arrests prior to axon sorting and ensheathment in MP0-Cre; Lamc1fl/fl mice, and causes a global peripheral neuropathy that persists throughout the lifetime of the animal. Preliminary hematopoietic analysis of 'steady state' MP0-Cre; Lamc1fl/fl and littermate control mice has shown the following: (1) MP0-Cre; Lamc1fl/fl bone marrow is innervated, and Cre-mediated gene recombination occurs in cells immunophenotypically consistent with SCs throughout the peripheral nervous system, including those in the bone marrow; (2) MP0-Cre; Lamc1fl/fl mice are lymphopenic but not neutropenic; (3) MP0-Cre; Lamc1fl/fl mice have significantly reduced spleen size and cellularity; and (4) MP0-Cre; Lamc1fl/fl bone marrow has an ~50% reduction in Lin-Sca-1+Kit+(LSK) cells (measured as a percentage of the Lin- compartment of the bone marrow). These results are consistent with earlier work by our groups in which we found that global Lamc1 gene deletion in adult mice induced peripheral blood lymphopenia, reduced spleen size, and a niche-dependent reduction of lymphoid progenitor and precursor cells that was secondary to increased lymphoid precursor cell apoptosis and reduced proliferation (UBC-CreERT2; Lamc1fl/fl mouse line). As with the SC-specific laminin-γ1 deficient mice, myelopoiesis was preserved in the UBC-CreERT2; Lamc1fl/fl mice. Based on results from MP0-Cre; Lamc1fl/fl and UBC-CreERT2; Lamc1fl/fl mice, we conclude that early lymphoid but not myeloid development requires laminin-γ1 expression by MP0-Cre-targetted niche cells, i.e. Schwann Cells. Our results are consistent with reports from other labs that hematopoietic sympathetic neuropathy promotes aberrant myeloid expansion at the expense of lymphopoiesis2. Going forward, we will determine whether lymphopoietic development is dependent on global versus laminin-specific SC-derived cues, and whether these signals are transmitted directly between SCs and lymphoid biased HSPCs or indirectly via other components of the hematopoietic niche. We anticipate that this line of investigation will provide molecular insights and pharmacologic targets for prevention and or normalization of the 'hematopoietic neuropathy' induced by diabetes, aging, neurotoxic chemotherapies and myeloid malignancies. REFERENCES: 1 Yu, W. M., Feltri, M. L., Wrabetz, L., Strickland, S. & Chen, Z. L. Schwann cell-specific ablation of laminin gamma1 causes apoptosis and prevents proliferation. J Neurosci25, 4463-4472, doi:10.1523/JNEUROSCI.5032-04.2005 (2005). 2 Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat Med24, 782-791, doi:10.1038/s41591-018-0030-x (2018). Disclosures No relevant conflicts of interest to declare.


Metallomics ◽  
2016 ◽  
Vol 8 (9) ◽  
pp. 1002-1011 ◽  
Author(s):  
J. B. Hilton ◽  
A. R. White ◽  
P. J. Crouch

It is unclear why ubiquitous expression of mutant SOD1 selectively affects the central nervous system in amyotrophic lateral sclerosis. Here we hypothesise that the central nervous system is primarily affected because, unlike other tissues, it has relatively limited capacity to satiate an increased requirement for Cu.


2019 ◽  
Vol 59 (5) ◽  
pp. 567-576 ◽  
Author(s):  
Stefanie Schreiber ◽  
Frank Schreiber ◽  
Cornelia Garz ◽  
Grazyna Debska‐Vielhaber ◽  
Anne Assmann ◽  
...  

Innova ◽  
2020 ◽  
pp. 26-28
Author(s):  
Бородина К.А. ◽  
Затолокина М.А. ◽  
Харченко В.В. ◽  
Затолокина М.А. ◽  
Мишина Е.С. ◽  
...  

Currently, there is a lot of literature and research that reflects data on the structure of the peripheral nervous system. However, it should be noted that the results available in the sources do not contain a full range of data on the structural features of paraneural structures and have some contradictions. In addition, data on the morphological features of the structure of the paranephrium of peripheral nerves in ontogenesis are practically absent. This was the beginning of our research, in order to obtain new, more in-depth data on the age-related variability of the peripheral nerve paraneurium.


2020 ◽  
Vol 24 (02) ◽  
pp. 175-180
Author(s):  
Alberto Stefano Tagliafico ◽  
Raquel Prada González ◽  
Federica Rossi ◽  
Bianca Bignotti ◽  
Carlo Martinoli

AbstractThe peripheral nervous system is increasingly being investigated using medical imaging as a complement or in association with electrodiagnostics tests. The application of imaging techniques, such as ultrasound (US) and magnetic resonance imaging (MRI), allows detailed visualization of the peripheral nervous system. According to the European Society of Musculoskeletal Radiology, the use of US for nerve evaluation is strongly encouraged. In addition, the role of US is further enhanced by the wide application of US-guided techniques to diagnose or to treat peripheral nerve disorders.Standard evaluation of peripheral nerves on US usually relies on cross-sectional area evaluation with different cutoff values in the osteofibrous tunnels and outside them. In several anatomical areas, side-to-side comparison is highly recommended because it helps distinguish subtle variations by using the unaffected limb as an internal control.US is widely used to perform US-guided interventional procedures on peripheral nerves. The recent development of radiomics and machine and deep learning applied to peripheral nerves may reveal new insights beyond the capabilities of the human eye. Radiomics may have a role in expanding the diagnostic capabilities of US and MRI in the study of peripheral nerve pathology, especially when the cross-sectional area is not markedly increased.


Glia ◽  
2006 ◽  
Vol 53 (7) ◽  
pp. 744-753 ◽  
Author(s):  
Jennifer N. Solomon ◽  
Coral-Ann B. Lewis ◽  
Bahareh Ajami ◽  
Stephane Y. Corbel ◽  
Fabio M.V. Rossi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document