scholarly journals Long Non-Coding RNA PVT1/miR-150/ HIG2 Axis Regulates the Proliferation, Invasion and the Balance of Iron Metabolism of Hepatocellular Carcinoma

2018 ◽  
Vol 49 (4) ◽  
pp. 1403-1419 ◽  
Author(s):  
Yunxiuxiu Xu ◽  
Xinxi Luo ◽  
Wenguang He ◽  
Guangcheng Chen ◽  
Yanshan Li ◽  
...  

Background/Aims: To investigate the biological roles and underlying molecular mechanisms of long non-coding RNA (lncRNA) PVT1 in Hepatocellular carcinoma (HCC). Methods: qRT-PCR was performed to measure the expression of miRNA and mRNA. Western blot was performed to measure the protein expression. CCK-8 assay was performed to determine cell proliferation. Flow cytometry was performed to detect cell apoptosis. Wounding-healing assay and Transwell assay was performed to detect cell migration and invasion. Dual luciferase reporter assay was performed to verify the target relationship. Quantichrom iron assay was performed to check uptake level of cellular iron. Results: PVT1 expression was up-regulated in HCC tissues and cell lines. Function studies revealed that PVT1 knockdown significantly suppressed cell proliferation, migration and invasion, and induced cell apoptosis in vitro. Furthermore, PVT1 could directly bind to microRNA (miR)-150 and down-regulate miR-150 expression. Hypoxia-inducible protein 2 (HIG2) was found to be one target gene of miR-150, and PVT1 knockdown could inhibit the expression of HIG2 through up-regulating miR-150 expression. In addition, the expression of miR-150 was down-regulated, while the expression of HIG2 was up-regulated in HCC tissues and cell lines. Moreover, inhibition of miR-150 could partly reverse the biological effects of PVT1 knockdown on proliferation, motility, apoptosis and iron metabolism in vitro, which might be associated with dysregulation of HIG2. In vivo results showed that PVT1 knockdown suppressed tumorigenesis and iron metabolism disorder by regulating the expression of miR-150 and HIG2. Conclusion: Taken together, the present study demonstrates that PVT1/miR-150/HIG2 axis may lead to a better understanding of HCC pathogenesis and provide potential therapeutic targets for HCC.

2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also done to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, invasion in vitro, and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. For the mechanism part, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC. Methods Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays. Results Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4. Conclusions PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2019 ◽  
Vol 9 (8) ◽  
pp. 1100-1107
Author(s):  
Qiuyuan Shi ◽  
Dandan Shen ◽  
Yuanjiang Shang

Background: MicroRNAs (miRNAs) play important roles in the carcinogenesis and progression of hepatocellular carcinoma (HCC). Previous studies have shown that miR-3144 is down-regulated in HCC tissues. The present study investigated the expression and biological roles, underlying mechanisms of miR-3144 in HCC cell lines. Methods and material: RT-qPCR analysis was performed to detect miR-3144 expression in the HCC cell lines and normal hepatic cell line. CCK-8 assay showed that the effect of miR-3144 expression on cell proliferation. Using wound healing assay and Transwell assay to detect the effect of miR-3144 on cell invasion and migration of HCC. Flow cytometry assay showed that miR-3144 induced apoptotic cell death in the SK-HEP-1 cells. Luciferase reporter assay was performed to evaluate the interaction between miR-3144 and the Steap4 3′-UTR. Western blotting assay were performed to investigate the effect of miR-3144 expression on the expression of CDK2, cyclinE1, p21, MMP2, MMP9 and Steap4. Results: MiR-3144 expression was downregulated in HCC cell lines. MiR-3144 overexpression inhibited the proliferation of HCC cells via regulating CDK2, cyclinE1 and p21 in SK-HEP-1 cells. MiR-3144 suppressed the migration and invasion of HCC cells via decreasing the MMP2 and MMP9. Further, miR-3144 promotes cell apoptosis of HCC. Moreover, miR-3144 negatively regulated Steap4 expression by directly binding to the 3′-UTR of Steap4 mRNA. Conclusion: Our results suggested that miR-3144 may be a novel target for future HCC therapy.


Author(s):  
Baiyin Mu ◽  
Chenlan Lv ◽  
Qingli Liu ◽  
Hong Yang

Abstract There is emerging evidence that dysregulation of long non-coding RNAs (lncRNAs) is associated with hepatocellular carcinoma (HCC). Zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) functions as an oncogenic regulator in various malignancies. Nonetheless, the potential role of ZEB1-AS1 in HCC remains poorly elucidated. Herein, qRT-PCR was employed for examining ZEB1-AS1, miR-299-3p and E2F1 mRNA expressions in HCC cells and tissues. MTT assay was performed to evaluate cell proliferation. Transwell assay was utilized for evaluating cancer cell migration and invasion. Western blot was employed for measuring E2F1 protein expression. What’s more, dual-luciferase reporter assay was utilized for verifying the targeting relationships between ZEB1-AS1 and miR-299-3p, as well as E2F1 and miR-299-3p. It was demonstrated that, in HCC tissues and cells, ZEB1-AS1 expression was markedly increased, and meanwhile, its high expression level is related to the unfavorable clinicopathologic indicators. ZEB1-AS1 overexpression facilitated HCC cell proliferation, migration and invasion, while its knockdown led to the opposite effects. In terms of mechanism, we discovered that ZEB1-AS1 could decoy miR-299-3p and up-regulate E2F1 expression. This work reveals the functions and mechanism of ZEB1-AS1 in HCC tumorigenesis and progression, which provides novel biomarkers and therapeutic targets for HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Guohong Huang ◽  
Yimei Yang ◽  
Mengxin Lv ◽  
Tian Huang ◽  
Xiaoyan Zhan ◽  
...  

Background and Aims. MicroR-23b-3p (miR-23b-3p) has been found to be abnormally expressed in a variety of malignant tumors and to play a role in tumor inhibition or promotion. However, the regulatory mechanism of miR-23b-3p in COAD remains unclear. The purpose of this study was to investigate the clinical significance of miR-23b-3p expression in COAD cells and to explore its role and regulatory mechanism in the growth of COAD. Materials and Methods. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure miR-23b-3p expression in COAD tissues and cell lines. After transfecting miR-23b-3p mimics into two human COAD cell lines (SW620 and LoVo), the cell counting kit-8 (CCK-8), colony formation, and 5-ethynyl-2′-deoxyuridine (EdU) assays were used to detect cell proliferation, the Transwell assay was used to measure cell migration and invasion capacity, and flow cytometry was used to evaluate cell apoptosis in vitro. In addition, a luciferase reporter assay was used to determine whether miR-23b-3p targets NFE2L3. The downstream regulatory mechanisms of miR-23b-3p action in COAD cells were also investigated. For in vivo tumorigenesis assay, COAD cells stably overexpressing miR-23b-3p were injected subcutaneously into the flank of nude mice to obtain tumors. Results. Significantly decreased expression of miR-23b-3p was detected in COAD tissues and cell lines. Exogenous miR-23b-3p expression inhibited cell proliferation, migration, and invasion and promoted cell apoptosis of COAD cells in vitro. Nuclear factor erythroid 2 like 3 (NFE2L3) was identified as a direct target gene of miR-23b-3p. In addition, reintroduction of NFE2L3 partially abolished the anticancer effects of miR-23b-3p on COAD cells. Furthermore, miR-23b-3p overexpression hindered the growth of COAD cells in vivo. Conclusion. miR-23b-3p inhibited the oncogenicity of COAD cells in vitro and in vivo by directly targeting NFE2L3, suggesting the importance of the miR-23b-3p/NFE2L3 pathway in the development of COAD.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC. Methods Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays. Results Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4. Conclusions PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2018 ◽  
Vol 50 (6) ◽  
pp. 2124-2138 ◽  
Author(s):  
Ying Zhang ◽  
Jianliang Xu ◽  
Shaoquan Zhang ◽  
Jun An ◽  
Jin Zhang ◽  
...  

Background/Aims: Previous studies have demonstrated that long non-coding RNAs (lncRNAs) may play critical roles in cancer biology, including Hepatocellular carcinoma (HCC). The HOXA cluster antisense RNA2 (HOXA-AS2) lncRNA plays an important role in carcinogenesis, however, the underlying role of HOXA-AS2 in HCC remains unknown. The present study examined the effects of HOXA-AS2 on the progression of HCC, and explored the underlying molecular mechanisms. Methods: Quantitative real-time PCR was used to detect HOXA-AS2 expression in HCC tissues and cell lines. Furthermore, the effects of HOXA-AS2 silencing and overexpression on cell proliferation, cell cycle, apoptosis, migration, and invasion were assessed in HCC in vitro and in vivo. Furthermore, bioinformatics online programs predicted and luciferase reporter assay were used to validate the association of HOXA-AS2 and miR-520c-3p in HCC cells. Results: We observed that HOXA-AS2 was up-regulated in HCC tissues and cell lines. In vitro experiments revealed that HOXA-AS2 knockdown significantly inhibited HCC cells proliferation by causing G1 arrest and promoting apoptosis, whereas HOXA-AS2 overexpression promoted cell growth. Further functional assays indicated that HOXA-AS2 significantly promoted HCC cell migration and invasion by promoting EMT. Bioinformatics online programs predicted that HOXA-AS2 sponge miR-520c-3p at 3’-UTR with complementary binding sites, which was validated using luciferase reporter assay. HOXA-AS2 could negatively regulate the expression of miR-520c-3p in HCC cells. MiR-520c-3p was down-regulated and inversely correlated with HOXA-AS2 expression in HCC tissues. miR-520c-3p suppressed cell proliferation, invasion and migration in HCC cells, and enforced expression of miR-520c-3p attenuated the oncogenic effects of HOXA-AS2 in HCC cells. By bioinformatic analysis and dual-luciferase reporter assay, we found that miR-223-3p directly targeted the 3’-untranslated region (UTR) of Glypican-3 (GPC3), one of the key players in HCC. GPC3 was up-regulated in HCC tissues, and was negatively correlated with miR-520c-3p expression and positively correlated with HOXA-AS2 expression. Conclusion: In summary, our results suggested that the HOXA-AS2/miR-520c-3p/GPC3 axis may play an important role in the regulation of PTC progression, which could serve as a biomarker and therapeutic target for HCC.


2019 ◽  
Vol 9 (6) ◽  
pp. 822-828
Author(s):  
Zhaohua Cheng ◽  
Weidong Jiang ◽  
Yingbo Han ◽  
Ping Duan

Background: Hepatocellular carcinoma has low levels of long non-coding RNA (LncRNA) RP1130. However, the effects of LncRNA RP1130 in hepatocellular carcinoma still unknown. Materials and Methods: Expression of LncRNA RP1130-1 in HCC and cell lines were detected by real-time PCR. Cell proliferation was assessed by CCK-8. Wound-healing and Transwell assays were performed for HCC cell migration and invasion. Western blotting was carried out to evaluate cell cycle, migration and invasion associated proteins in HCC. Results: Expression levels of LncRNA RP1130-1 was dramatically lower in HCC tissues than in normal control. Similarly, LncRNA RP1130-1 was downregulated in HCC cell lines compared with LO2. The cellular experiments revealed that high expression of LncRNA RP1130-1 in HCC inhibited cell proliferation, migration and invasion. In addition, overexpression of LncRNA RP1130-1 inhibited the expression of transforming growth factor (TGF)-β, and TGF-β reversed the effects of LncRNA RP1130 in HCC cell lines. Conclusions: LncRNA RP1130 exerts anti-tumor effects mediated by inhibiting TGF-β. In summarize, our results indicate that LncRNA RP1130/TGFβ may be a potential therapeutic target for HCC.


2020 ◽  
Author(s):  
Tao Zhang ◽  
Lijian Chen ◽  
Xundi Xu ◽  
Chao Shen

Abstract OBJECTIVE : Patients with advanced gallbladder cancer (GBC) have a lower 5-year survival rate. Long non-coding RNA urothelial carcinoma associated 1 (UCA1) and miR-613 are involved in the progression of various cancers. This study was to explore the regulatory mechanism between UCA1 and miR-613 in GBC. METHODS: The expression levels of UCA1, miR-613, and SPOCK1 mRNA were detected using qRT-PCR. Cell proliferation, migration, invasion, and apoptosis were determined with MTT, transwell, or flow cytometry assays. The levels of SPOCK1 protein, Bax, cleaved-casp-3, and Bcl-2 were determined by western blot analysis. The relationship between miR-613 and UCA1 or SPOCK1 was verified via dual-luciferase reporter and/or RNA immunoprecipitation (RIP) assays. The role of UCA1 in vivo was confirmed by xenograft assay. RESULTS: UCA1 and SPOCK1 were upregulated while miR-613 was downregulated in GBC tissues and cells. UCA1 silencing blocked tumor growth in vivo, impeded cell proliferation, migration, invasion, and induced cell apoptosis in GBC cells in vitro. Notably, UCA1 acted as a sponge for miR-613, which targeted SPOCK1 in GBC cells. Moreover, miR-613 repressed cell proliferation, migration, invasion, and accelerated cell apoptosis in GBC cells. UCA1 enhancement reversed miR-613 mimic-mediated influence on proliferation, migration, invasion, and apoptosis of GBC cells. UCA1 regulated SPOCK1 expression through miR-613. Furthermore, SPOCK1 elevation overturned UCA1 silencing-mediated the malignant behaviors of GBC cells. CONCLUSION: UCA1 knockdown suppressed GBC progression via downregulating SPOCK1 via sponging miR-613, providing an evidence for UCA1 as a target for GBC treatment.


Sign in / Sign up

Export Citation Format

Share Document