Long Non-Coding RNA RP1130-1 Suppresses Cell Proliferation, Invasion and Migration Mediated by Downregulation of TGF-β

2019 ◽  
Vol 9 (6) ◽  
pp. 822-828
Author(s):  
Zhaohua Cheng ◽  
Weidong Jiang ◽  
Yingbo Han ◽  
Ping Duan

Background: Hepatocellular carcinoma has low levels of long non-coding RNA (LncRNA) RP1130. However, the effects of LncRNA RP1130 in hepatocellular carcinoma still unknown. Materials and Methods: Expression of LncRNA RP1130-1 in HCC and cell lines were detected by real-time PCR. Cell proliferation was assessed by CCK-8. Wound-healing and Transwell assays were performed for HCC cell migration and invasion. Western blotting was carried out to evaluate cell cycle, migration and invasion associated proteins in HCC. Results: Expression levels of LncRNA RP1130-1 was dramatically lower in HCC tissues than in normal control. Similarly, LncRNA RP1130-1 was downregulated in HCC cell lines compared with LO2. The cellular experiments revealed that high expression of LncRNA RP1130-1 in HCC inhibited cell proliferation, migration and invasion. In addition, overexpression of LncRNA RP1130-1 inhibited the expression of transforming growth factor (TGF)-β, and TGF-β reversed the effects of LncRNA RP1130 in HCC cell lines. Conclusions: LncRNA RP1130 exerts anti-tumor effects mediated by inhibiting TGF-β. In summarize, our results indicate that LncRNA RP1130/TGFβ may be a potential therapeutic target for HCC.

2018 ◽  
Vol 49 (4) ◽  
pp. 1403-1419 ◽  
Author(s):  
Yunxiuxiu Xu ◽  
Xinxi Luo ◽  
Wenguang He ◽  
Guangcheng Chen ◽  
Yanshan Li ◽  
...  

Background/Aims: To investigate the biological roles and underlying molecular mechanisms of long non-coding RNA (lncRNA) PVT1 in Hepatocellular carcinoma (HCC). Methods: qRT-PCR was performed to measure the expression of miRNA and mRNA. Western blot was performed to measure the protein expression. CCK-8 assay was performed to determine cell proliferation. Flow cytometry was performed to detect cell apoptosis. Wounding-healing assay and Transwell assay was performed to detect cell migration and invasion. Dual luciferase reporter assay was performed to verify the target relationship. Quantichrom iron assay was performed to check uptake level of cellular iron. Results: PVT1 expression was up-regulated in HCC tissues and cell lines. Function studies revealed that PVT1 knockdown significantly suppressed cell proliferation, migration and invasion, and induced cell apoptosis in vitro. Furthermore, PVT1 could directly bind to microRNA (miR)-150 and down-regulate miR-150 expression. Hypoxia-inducible protein 2 (HIG2) was found to be one target gene of miR-150, and PVT1 knockdown could inhibit the expression of HIG2 through up-regulating miR-150 expression. In addition, the expression of miR-150 was down-regulated, while the expression of HIG2 was up-regulated in HCC tissues and cell lines. Moreover, inhibition of miR-150 could partly reverse the biological effects of PVT1 knockdown on proliferation, motility, apoptosis and iron metabolism in vitro, which might be associated with dysregulation of HIG2. In vivo results showed that PVT1 knockdown suppressed tumorigenesis and iron metabolism disorder by regulating the expression of miR-150 and HIG2. Conclusion: Taken together, the present study demonstrates that PVT1/miR-150/HIG2 axis may lead to a better understanding of HCC pathogenesis and provide potential therapeutic targets for HCC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qingjuan Meng ◽  
Ningning Wang ◽  
Guanglan Duan

Abstract Background X inactivation-specific transcript (XIST) is the long non-coding RNA (lncRNA) related to cancer, which is involved in the development and progression of various types of tumor. However, up to now, the exact role and molecular mechanism of XIST in the progression of ovarian cancer are not clear. We studied the function of XIST in ovarian cancer cells and clinical tumor specimens. Methods RT-qPCR was performed to detect the expression levels of miR-335 and BCL2L2 in ovarian cancer cells and tissues. MTT and transwell assays were carried out to detect cell proliferation, migration, and invasion abilities. Western blot was performed to analyze the expression level of BCL2L2. The interaction between miR-335 and XIST/BCL2L2 was confirmed using a luciferase reporter assay. Results The inhibition of XIST can inhibit the proliferation invasion and migration of human ovarian cancer cells. In addition, the miR-335/BCL2L2 axis was involved in the functions of XIST in ovarian cancer cells. These results suggested that XIST could regulate tumor proliferation and invasion and migration via modulating miR-335/BCL2L2. Conclusion XIST might be a carcinogenic lncRNA in ovarian cancer by regulating miR-335, and it can serve as a therapeutic target in human ovarian cancer.


2020 ◽  
Vol 168 (5) ◽  
pp. 547-555
Author(s):  
Jin Dou ◽  
Daoyuan Tu ◽  
Haijian Zhao ◽  
Xiaoyu Zhang

Abstract MiR-301a is as an oncogene involved in the regulation of gastric cancer (GC) progression, but the underlying mechanism is unclear. This study was to explore the lncRNA PCAT18/miR-301a/TP53INP1 axis in regulating the GC cell proliferation and metastasis. In the present study, GC tissues and cell lines were collected for the detection of PCAT18 expression. Herein, we found that PCAT18 is significantly decreases in human GC tissues and five GC cell lines. Overexpression of PCAT18 inhibits cell viability, invasion and migration of GC cells and tumour growth of GC xenograft tumours. PCAT18 negatively regulates the expression level of miR-301a. The interaction between PCAT18 and miR-301a is confirmed by RIP and RNA pull down. MiR-301a mimic increases cell viability and promotes cell migration and invasion and reverses the inhibitory action of PCAT18. TP53INP1 expression is negatively regulated by miR-301a and TP53INP1/miR-301a is involved in GC viability, migration and invasion. The promoting of PCAT18 on TP53INP1 expression is abolished by miR-301a overexpression. In conclusion, lncRNA PCAT18 acts as a tumour suppressor for GC and lncRNA PCAT18, miR-301a and TP53INP1 comprise a signal axis in regulating GC cell proliferation, migration and invasion.


2017 ◽  
Vol 44 (3) ◽  
pp. 1188-1198 ◽  
Author(s):  
Jidong Sui ◽  
Xuejun Yang ◽  
Wenjing Qi ◽  
Kun Guo ◽  
Zhenming Gao ◽  
...  

Background/Aims: Recent evidence has indicated the crucial regulatory roles of long non-coding RNAs (lncRNAs) in tumour biology. In hepatocellular carcinoma (HCC), aberrant expression of lncRNAs plays an essential role in HCC tumourigenesis. However, the potential roles and regulatory mechanisms of the novel human lncRNA, Linc-USP16, in HCC are unclear. Methods: To investigate the function of Linc-USP16 in HCC, we first analysed the expression levels of Linc-USP16 in HCC patient tissues and cell lines via q-RT-PCR and established overexpressed or knockdown HCC cell lines. Results: Here, we found that Linc-USP16 expression was significantly down-regulated in HCC patient tissues and cell lines. Further functional experiments suggested that Linc-USP16 could directly increase PTEN expression by acting as a competing endogenous RNA (ceRNA) for miR-21 and miR-590-5p. These interactions led to repression of AKT pathway and inhibition of HCC cell proliferation and migration. Conclusion: Thus, our data showed that Linc-USP16, as a tumour suppressor, plays an important role in HCC pathogenesis and provides a new therapeutic strategy for HCC treatment.


2020 ◽  
Vol 20 (10) ◽  
pp. 1197-1208
Author(s):  
Zhuo Ma ◽  
Kai Li ◽  
Peng Chen ◽  
Qizheng Pan ◽  
Xuyang Li ◽  
...  

Background: Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis remains the main cause of mortality in OS patients. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Objective: Thus, elucidating the role of miRNA dysregulation in OS metastasis may provide novel therapeutic targets. Methods: The previous study found a low miR-134 expression level in the OS specimens compared with paracancer tissues. Overexpression of miR-134 stable cell lines was established. Cell viability assay, cell invasion and migration assay and apoptosis assay were performed to evaluate the role of miR-134 in OS in vitro. Results: We found that miR-134 overexpression inhibits cell proliferation, migration and invasion, and induces cell apoptosis in both MG63 and Saos-2 cell lines. Mechanistically, miR-134 targets the 3'-UTR of VEGFA and MYCN mRNA to silence its translation, which was confirmed by luciferase-reporter assay. The real-time PCR analysis illustrated that miR-134 overexpression decreases VEGFA and MYCN mRNA levels. Additionally, the overexpression of VEGFA or MYCN can partly attenuate the effects of miR-134 on OS cell migration and viability. Furthermore, the overexpression of miR-134 dramatically inhibits tumor growth in the human OS cell line xenograft mouse model in vivo. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-134 is regulated by Interferon Regulatory Factor (IRF1), which binds to its promoter and activates miR-134 expression. Conclusion: Our study demonstrates that IRF1 is a key player in the transcriptional control of miR-134, and it inhibits cell proliferation, invasion and migration in vitro and in vivo via targeting VEGFA and MYCN.


2016 ◽  
Vol 242 (2) ◽  
pp. 184-193 ◽  
Author(s):  
Tawin Iempridee

Long non-coding RNA H19 is aberrantly expressed in multiple malignancies and its expression levels correlate with recurrence, metastasis, and patient survival. Despite numerous reports documenting the role of H19 in carcinogenesis, its contribution to cervical cancer development is still largely unknown. In this study, I observed that H19 expression was elevated in cervical cancer cell lines and could be detected in extracellular vesicles in the culture medium. In addition, I demonstrated, by overexpression and knockdown experiments, that H19 promoted cell proliferation and multicellular tumor spheroid formation without significantly affecting apoptosis and cell migration. Finally, treatment with transforming growth factor beta and hypoxia-mimetic CoCl2 could modulate H19 levels in a cell line-specific manner. These findings indicate that H19 promotes both anchorage-specific and -independent growth of cervical cancer cell lines and may serve as a potential target for cancer diagnosis and therapy.


2020 ◽  
Vol 40 (3) ◽  
Author(s):  
Xu-e Chen ◽  
Pu Chen ◽  
Shanshan Chen ◽  
Jin Lu ◽  
Ting Ma ◽  
...  

Abstract The present study aimed to investigate the effects of lncRNA FENDRR on the migration and invasion of malignant melanoma (MM) cells. The expression levels of FENDRR in MM tissues and MM cell lines were detected using qRT-PCR, followed by construction of FENDRR-knocked down and overexpressed stable cells. Then the effects of FENDRR on cell proliferation, migration and invasion were detected using MTT assay and Transwell assay. The protein expression levels of matrix metallopeptidase 2 (MMP2), MMP9, and related factors in JNK/c-Jun pathway were detected using Western blot. FENDRR was down-regulated in MM tissues and cell lines. Besides, its expression levels in different MM cells were diverse. Knockdown of FENDRR facilitated MM cells proliferation, migration and invasion in A375 cells, while overexpressing FENDRR had reverse results. In addition, MMPs and JNK/c-Jun pathway involved in the FENDRR-mediated regulation of MM cell proliferation, migration and invasion. Our results demonstrated that FENDRR mediated the metastasis phenotype of MM cells by inhibiting the expressions of MMP2 and MMP9 and antagonizing the JNK/c-Jun pathway.


2019 ◽  
Vol 9 (8) ◽  
pp. 1100-1107
Author(s):  
Qiuyuan Shi ◽  
Dandan Shen ◽  
Yuanjiang Shang

Background: MicroRNAs (miRNAs) play important roles in the carcinogenesis and progression of hepatocellular carcinoma (HCC). Previous studies have shown that miR-3144 is down-regulated in HCC tissues. The present study investigated the expression and biological roles, underlying mechanisms of miR-3144 in HCC cell lines. Methods and material: RT-qPCR analysis was performed to detect miR-3144 expression in the HCC cell lines and normal hepatic cell line. CCK-8 assay showed that the effect of miR-3144 expression on cell proliferation. Using wound healing assay and Transwell assay to detect the effect of miR-3144 on cell invasion and migration of HCC. Flow cytometry assay showed that miR-3144 induced apoptotic cell death in the SK-HEP-1 cells. Luciferase reporter assay was performed to evaluate the interaction between miR-3144 and the Steap4 3′-UTR. Western blotting assay were performed to investigate the effect of miR-3144 expression on the expression of CDK2, cyclinE1, p21, MMP2, MMP9 and Steap4. Results: MiR-3144 expression was downregulated in HCC cell lines. MiR-3144 overexpression inhibited the proliferation of HCC cells via regulating CDK2, cyclinE1 and p21 in SK-HEP-1 cells. MiR-3144 suppressed the migration and invasion of HCC cells via decreasing the MMP2 and MMP9. Further, miR-3144 promotes cell apoptosis of HCC. Moreover, miR-3144 negatively regulated Steap4 expression by directly binding to the 3′-UTR of Steap4 mRNA. Conclusion: Our results suggested that miR-3144 may be a novel target for future HCC therapy.


Sign in / Sign up

Export Citation Format

Share Document