scholarly journals Predementia Brain Changes in Progranulin Mutation: A Systematic Review of Neuroimaging Evidence

2019 ◽  
Vol 47 (1-2) ◽  
pp. 1-18 ◽  
Author(s):  
Courtney Alexander ◽  
Derek Pisner ◽  
Claudia Jacova

Background: Mutations in the progranulin (GRN) gene are a major cause of familial frontotemporal dementia. They result in a loss of progranulin levels and in GRN-related brain degenerative changes that unfold over years if not decades. The aim of our review was to summarize the evidence on emerging functional and structural brain abnormalities in carriers of GRN mutations. Summary: We performed a systematic search for studies that used at least one modality (structural MRI, fMRI, fluorodeoxyglucose positron emission tomography, diffusion tensor imaging) to compare mutation carriers to non-carrier controls. Our search produced 13 studies published between 2008 and 2017, the majority cross-sectional, with carrier sample sizes ranging from 5 to 65. Key Messages: The aggregate findings suggest that (1) measurable brain changes are detectable in at least some mutation carriers 20–25 years prior to disease onset; (2) functional/metabolic changes progress more consistently over time than structural changes; (3) the topographic pattern is anterior to posterior, not always asymmetric, and maps onto known functional networks.

2016 ◽  
Vol 30 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Antoine Yrondi ◽  
Patrice Péran ◽  
Anne Sauvaget ◽  
Laurent Schmitt ◽  
Christophe Arbus

ObjectivesElectroconvulsive therapy (ECT) is a non-pharmacological treatment that is effective in treating severe and treatment-resistant depression. Although the efficacy of ECT has been demonstrated to treat major depressive disorder (MDD), the brain mechanisms underlying this process remain unclear. Structural–functional changes occur with the use of ECT as a treatment for depression based on magnetic resonance imaging (MRI). For this reason, we have tried to identify the changes that were identified by MRI to try to clarify some operating mechanisms of ECT. We focus to brain changes on MRI [structural MRI (sMRI), functional MRI (fMRI) and diffusion tensor imging (DTI)] after ECT.MethodsA systematic search of the international literature was performed using the bibliographic search engines PubMed and Embase. The research focused on papers published up to 30 September 2015. The following Medical Subject Headings (MESH) terms were used: electroconvulsive therapy AND (MRI OR fMRI OR DTI). Papers published in English were included. Four authors searched the database using a predefined strategy to identify potentially eligible studies.ResultsThere were structural changes according to the sMRI performed before and after ECT treatment. These changes do not seem to be entirely due to oedema. This investigation assessed the functional network connectivity associated with the ECT response in MDD. ECT response reverses the relationship from negative to positive between the two pairs of networks.ConclusionWe found structural–functional changes in MRI post-ECT. Because of the currently limited MRI data on ECT in the literature, it is necessary to conduct further investigations using other MRI technology.


2010 ◽  
Vol 6 ◽  
pp. S427-S427
Author(s):  
Itthipol Tawankanjanachot ◽  
Claudia Jacova ◽  
R. Hsiung Ging-Yuek ◽  
Hyunsoo Steve Lee ◽  
Siobhan McCormick ◽  
...  

2009 ◽  
Vol 21 (6) ◽  
pp. 301-307 ◽  
Author(s):  
Miho Ota ◽  
Satoko Obu ◽  
Noriko Sato ◽  
Katsuyoshi Mizukami ◽  
Takashi Asada

Objective:Recent cross-sectional studies suggest that brain changes in schizophrenia are progressive during the course of the disorder. However, it remains unknown whether this is a global process or whether some brain areas are affected to a greater degree. The aim of this study was to examine the longitudinal brain changes in patients with chronic older schizophrenia by magnetic resonance imaging (MRI).Methods:Three-dimensional (3D) T1-weighted and diffusion tensor (DT) MRI were performed twice on each of 16 chronic older schizophrenia patients (mean age = 58.1 ± 6.7 years ) with an interval of 1 year between imaging sessions. To clarify the longitudinal morphological and white matter changes, volume data and normalised diffusion tensor imaging (DTI) metrics were compared between the first and follow-up studies using a paired t-test.Results:Focal cortical volume loss was observed in the left prefrontal lobe and anterior cingulate on volumetric study. In addition, DTI metrics changed significantly at the bilateral posterior superior temporal lobes, left insula, genu of the corpus callosum and anterior cingulate.Conclusion:There are ongoing changes in the brains of schizophrenic patients during the course of the illness. Discrepancies between volume data and DTI metrics may indicate that the pattern of progressive brain changes varies according to brain region.


Sign in / Sign up

Export Citation Format

Share Document