Diffuse Tract Damage in CADASIL Is Correlated with Global Cognitive Impairment

2019 ◽  
Vol 81 (5-6) ◽  
pp. 294-301 ◽  
Author(s):  
Shiyu Ban ◽  
Hongzhi Wang ◽  
Mengxing Wang ◽  
Shuai Xu ◽  
Zhaoxia Qin ◽  
...  

Introduction: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy ­(CADASIL) is the most common familial cerebral small vessel disease caused by notch homolog protein 3 gene mutations and is strongly associated with ischemic stroke and dementia. Patients are characterized by cognitive impairment and widespread white matter (WM) lesions. However, the relationship between WM lesions and cognitive impairment is not very clear. The aim of this study was to investigate WM microstructural abnormalities by diffusion tensor imaging (DTI) and the relationship between WM alterations and cognitive impairment in patients with CADASIL. Methods: In the present study, we evaluated WM degeneration in 18 patients with CADASIL and 18 controls by fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) based on DTI. Results: Compared with healthy controls, patients with CADASIL showed extensive and significant reductions in FA and increased RD, AD, and MD. These alterations were distributed throughout the entire brain (mainly the inferior and superior longitudinal fasciculus, inferior fronto-occipital fasciculus, corpus callosum, internal capsule, external capsule, corona radiata, thalamic radiation, and cingulum). Furthermore, these WM microstructural alterations were significantly correlated with cognitive scores and stroke scale scores. Conclusion: Patients with ­CADASIL showed widespread WM abnormalities, and WM microstructural integrity and cognitive impairment were significantly correlated. Our results indicated that damage to WM tracts plays an important role in cognitive impairment in CADASIL.

2016 ◽  
Vol 29 (5) ◽  
pp. 793-803 ◽  
Author(s):  
Wen-wei Cao ◽  
Yao Wang ◽  
Quan Dong ◽  
Xue Chen ◽  
Yan-sheng Li ◽  
...  

ABSTRACTBackground:Cerebral small vessel disease (SVD) is the common cause of cognitive decline in the old population. MRI can be used to clarify its mechanisms. However, the surrogate markers of MRI for early cognitive impairment in SVD remain uncertain to date. We investigated the cognitive impacts of cerebral microbleeds (CMBs), diffusion tensor imaging (DTI), and brain volumetric measurements in a cohort of post-stroke non-dementia SVD patients.Methods:Fifty five non-dementia SVD patients were consecutively recruited and categorized into two groups as no cognitive impairment (NCI) (n = 23) or vascular mild cognitive impairment (VaMCI) (n = 32). Detailed neuropsychological assessment and multimodal MRI were completed.Results:The two groups differed significantly on Z scores of all cognitive domains (all p < 0.01) except for the language. There were more patients with hypertension (p = 0.038) or depression (p = 0.019) in the VaMCI than those in the NCI group. Multiple regression analysis of cognition showed periventricular mean diffusivity (MD) (β = −0.457, p < 0.01) and deep CMBs numbers (β = −0.352, p < 0.01) as the predictors of attention/executive function, which explained 45.2% of the total variance. Periventricular MD was the independent predictor for either memory (β = −0.314, p < 0.05) or visuo-spatial function (β = −0.375, p < 0.01); however, only small proportion of variance could be accounted for (9.8% and 12.4%, respectively). Language was not found to be correlated with any of the MRI parameters. No correlation was found between brain atrophic indices and any of the cognitive measures.Conclusion:Arteriosclerotic CMBs and periventricular white matter disintegrity seem to be independent MRI surrogated markers in the early stage of cognitive impairment in SVD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Du ◽  
Hong Zhu ◽  
Ling Yu ◽  
Peiwen Lu ◽  
Yage Qiu ◽  
...  

Objectives: We aim to investigate whether multi-dimensional diffusion tensor imaging (DTI) measures can sensitively identify different cognitive status of cerebral small vessel disease (CSVD) and to explore the underlying pattern of white matter disruption in CSVD.Methods: Two hundred and two participants were recruited, composed of 99 CSVD patients with mild cognitive impairment (VaMCI) and 60 with no cognitive impairment (NCI) and 43 healthy subjects as normal controls (NC). Full domain neuropsychological tests and diffusion-weighted imaging were performed on each subject. DTI metrics such as fractional anisotropy (FA), mean diffusivity (MD), the skeletonized mean diffusivity (PSMD), and structural brain network measures including network strength, global efficiency (EGlobal), and local efficiency (ELocal) were calculated. Region of interest (ROI) analysis of 42 white matter tracts was performed to examine the regional anatomical white matter disruption for each group.Results: Significant differences of multiple cognitive test scores across all cognitive domains especially processing and executive function existed among the three groups. DTI measures (FA, MD, and PSMD) showed significant group difference with the cognitive status changing. FA and EGlobal showed significant correlation with processing speed, executive function, and memory. ROI analysis found that white matter integrity impairment occurred from the preclinical stage of vascular cognitive impairment (VCI) due to CSVD. These lesions in the NCI group mainly involved some longitudinal fibers such as right superior longitudinal fasciculus (SLF-R), right superior fronto-occipital fasciculus (SFO-R), and right uncinate fasciculus (UNC-R), which might be more vulnerable to the cerebrovascular aging and disease process.Conclusions: DTI measures are sensitive neuroimaging markers in detecting the early cognitive impairment and able to differentiate the different cognitive status due to CSVD. Subtle changes of some vulnerable white matter tracts may be observed from the preclinical stage of VCI and have a local to general spreading pattern during the disease progression.


2021 ◽  
Vol 15 ◽  
Author(s):  
Tong Lu ◽  
Zan Wang ◽  
Ying Cui ◽  
Jiaying Zhou ◽  
Yuancheng Wang ◽  
...  

Ischemic leukoaraiosis (ILA) is related to cognitive impairment and vascular dementia in the elderly. One possible mechanism could be the disruption of white matter (WM) tracts and network function that connect distributed brain regions involved in cognition. The purpose of this study was to investigate the relationship between structural connectome and cognitive functions in ILA patients. A total of 89 patients with ILA (Fazekas score ≥ 3) and 90 healthy controls (HCs) underwent comprehensive neuropsychological examinations and diffusion tensor imaging scans. The tract-based spatial statistics approach was employed to investigate the WM integrity. Graph theoretical analysis was further applied to construct the topological architecture of the structural connectome in ILA patients. Partial correlation analysis was used to investigate the relationships between network measures and cognitive performances in the ILA group. Compared with HCs, the ILA patients showed widespread WM integrity disruptions. The ILA group displayed increased characteristic path length (Lp) and decreased global network efficiency at the level of the whole brain relative to HCs, and reduced nodal efficiencies, predominantly in the frontal–subcortical and limbic system regions. Furthermore, these structural connectomic alterations were associated with cognitive impairment in ILA patients. The association between WM changes (i.e., fractional anisotropy and mean diffusivity measures) and cognitive function was mediated by the structural connectivity measures (i.e., local network efficiency and Lp). In conclusion, cognitive impairment in ILA patients is related to microstructural disruption of multiple WM fibers and topological disorganization of structural networks, which have implications in understanding the relationship between ILA and the possible attendant cognitive impairment.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Lili Huang ◽  
Haifeng Chen ◽  
Huiya Li ◽  
Yi Qian ◽  
Dan Yang ◽  
...  

Background: White matter hyperintensity(WMH)is the most common neuroimaging manifestation of cerebral small vessel disease and is related to cognitive dysfunction or dementia. However, little is known about the mechanism, and no effective indicators exist to predict WMH-related cognitive impairment. Methods: We recruited 22 healthy controls (HC), 25 cases of WMH with normal cognition(WMH-NC), and 23 cases of WMH with mild cognitive impairment (WMH-MCI). All individuals underwent diffusion tensor imaging (DTI) and a standardized neuropsychological assessment. Automated Fiber Quantification was used to extract altered DTI metrics between groups, and partial correlation was performed to assess the associations between WM integrity and cognitive performance. Furthermore, machine learning analyses were performed to determine underlying imaging markers of WMH-related cognitive impairment. Results: Our study found that mean diffusivity (MD) values of several fiber bundles including the bilateral anterior thalamic radiation (ATR), the left inferior fronto-occipital fasciculus (IFOF), the right inferior longitudinal fasciculus (ILF), and the right superior longitudinal fasciculus (SLF), were negatively correlated with memory function, while that of the anterior component of the right IFOF and the posterior and intermediate component of the right ILF showed significant negative correlation with MMSE and episodic memory, respectively. Furthermore, machine learning analyses showed that the accuracy of recognizing WMH-MCI patients from the WMH populations was up to 80.49% and the intermediate and posterior components of the right ILF and the anterior component of the right IFOF contribute the most. Conclusions: Changes in the properties of DTI may be the potential mechanism of WMH-related MCI, especially the right IFOF and the right ILF, which may become imaging markers for predicting WMH-related cognitive dysfunction.


2020 ◽  
Vol 61 (12) ◽  
pp. 1677-1683 ◽  
Author(s):  
Kerim Aslan ◽  
Hediye Pinar Gunbey ◽  
Sumeyra Cortcu ◽  
Onur Ozyurt ◽  
Ugur Avci ◽  
...  

Background Metabolic, morphological, and functional brain changes associated with a neurological deficit in hyperthyroidism have been observed. However, changes in microstructural white matter (WM), which can explain the underlying pathophysiology of brain dysfunctions, have not been researched. Purpose To assess microstructural WM abnormality in patients with untreated or newly diagnosed hyperthyroidism using tract-based spatial statistics (TBSS). Material and Methods Eighteen patients with hyperthyroidism and 14 age- and sex-matched healthy controls were included in this study. TBSS were used in this diffusion tensor imaging study for a whole-brain voxel-wise analysis of fractional anisotropy, mean diffusivity, axial diffusivity (AD), and radial diffusivity (RD) of WM. Results When compared to the control group, TBSS showed a significant increase in the RD of the corpus callosum, anterior and posterior corona radiata, posterior thalamic radiation, cingulum, superior longitudinal fasciculus, and the retrolenticular region of the internal capsule in patients with hyperthyroidism ( P < 0.05), as well as a significant decrease in AD in the anterior corona radiata and the genu of corpus callosum ( P < 0.05). Conclusion This study showed that more regions are affected by the RD increase than the AD decrease in the WM tracts of patients with hyperthyroidism. These preliminary results suggest that demyelination is the main mechanism of microstructural alterations in the WM of hyperthyroid patients.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Forrest Lowe ◽  
Souvik Sen ◽  
Hamdi S Adam ◽  
Ryan Demmer ◽  
Bruce A Wasserman ◽  
...  

Background: Prior studies have shown the association between periodontal disease, lacunar strokes and cognitive impairment. Using the Atherosclerosis Risk in Communities (ARIC) cohort study we investigated the relationship between periodontal disease (PD) and the development of MRI verified small vessel disease. Methods: Using the ARIC database data we extracted data for 1143 (mean age 77 years, 76% white, 24% African-American and 45% male) participants assessed for PD (N=800) versus periodontal health (N=343). These participants were assessed for small vessel disease on 3T MRI as measured by the log of white matter hyperintensity volume (WMHV). WMHV were derived from a semiautomated segmentation of FLAIR images. Student t-test was then used to evaluate the relationship between small vessel disease as the log of WMHV in subjects with PD or periodontal health. Based on WMHV the patients were grouped into quartiles and the association of PD with WMHV were tested using the group in periodontal health and lowest quartile of WMHV as the reference groups. Multinomial logistic regression was used to compute crude and adjusted odds ratio (OR) for the higher quartiles of WMHV compared to the reference quartile. Results: There was a significant increase in the presence of small vessel disease measured as log WMHV in the PD cohort as compared to periodontal health cohort with p= 0.023 on Independent Sample t-est. Based on WMHV the subjects were grouped into quartiles 0-6.41, >6.41-11.56, >11.56-21.36 and >21.36 cu mm3). PD was associated with only the highest quartile of WMHV on univariate (crude OR 1.77, 95% CI 1.23-2.56) and multivariable (adjusted OR 1.61, 95% CI 1.06-2.44) analyses. The later was adjusted for age, race, gender, hypertension, diabetes and smoking. Conclusion: Based on this prospective cohort there is data to suggest that PD may be associated with cerebral small vessel disease. Maintaining proper dental health may decrease future risk for the associated lacunar strokes and vascular cognitive impairment.


Neurology ◽  
2018 ◽  
Vol 91 (24) ◽  
pp. e2244-e2255 ◽  
Author(s):  
Ian O. Bledsoe ◽  
Glenn T. Stebbins ◽  
Doug Merkitch ◽  
Jennifer G. Goldman

ObjectiveTo evaluate microstructural characteristics of the corpus callosum using diffusion tensor imaging (DTI) and their relationships to cognitive impairment in Parkinson disease (PD).MethodsSeventy-five participants with PD and 24 healthy control (HC) participants underwent structural MRI brain scans including DTI sequences and clinical and neuropsychological evaluations. Using Movement Disorder Society criteria, PD participants were classified as having normal cognition (PD-NC, n = 23), mild cognitive impairment (PD-MCI, n = 35), or dementia (PDD, n = 17). Cognitive domain (attention/working memory, executive function, language, memory, visuospatial function) z scores were calculated. DTI scalar values, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), were established for 5 callosal segments on a midsagittal plane, single slice using a topographically derived parcellation method. Scalar values were compared among participant groups. Regression analyses were performed on cognitive domain z scores and DTI metrics.ResultsParticipants with PD showed increased AD values in the anterior 3 callosal segments compared to healthy controls. Participants with PDD had significantly increased AD, MD, and RD in the anterior 2 segments compared to participants with PD-NC and most anterior segment compared to participants with PD-MCI. FA values did not differ significantly between participants with PD and participants with HC or among PD cognitive groups. The strongest associations for the DTI metrics and cognitive performance occurred in the most anterior and most posterior callosal segments, and also reflected fronto-striatal and posterior cortical type cognitive deficits, respectively.ConclusionsMicrostructural white matter abnormalities of the corpus callosum, as measured by DTI, may contribute to PD cognitive impairment by disrupting information transfer across interhemispheric and callosal–cortical projections.


2012 ◽  
Vol 24 (9) ◽  
pp. 1483-1493 ◽  
Author(s):  
Senthil Thillainadesan ◽  
Wei Wen ◽  
Lin Zhuang ◽  
John Crawford ◽  
Nicole Kochan ◽  
...  

ABSTRACTBackground: Previous studies using diffusion tensor imaging (DTI) have observed microstructural abnormalities in white matter regions in both Alzheimer's disease and mild cognitive impairment (MCI). The aim of this work was to examine the abnormalities in white matter and subcortical regions of MCI and its subtypes in a large, community-dwelling older aged cohortMethods: A community-based sample of 396 individuals without dementia underwent medical assessment, neuropsychiatric testing, and neuroimaging. Of these, 158 subjects were classified as MCI and 238 as cognitively normal (controls) based on international MCI consensus criteria. Regional fractional anisotropy (FA) and mean diffusivity (MD) measures were calculated from the DTI and compared between groups. The false discovery rate correction was applied for multiple testing.Results: Subjects with MCI did not have significant differences in FA compared with controls after correction for multiple testing, but had increased MD in the right putamen, right anterior limb of the internal capsule, genu and splenium of the corpus callosum, right posterior cingulate gyrus, left superior frontal gyrus, and right and left corona radiata. When compared with controls, changes in left anterior cingulate, left superior frontal gyrus, and right corona radiata were associated with amnestic MCI (aMCI), whereas changes in the right putamen, right anterior limb of the internal capsule, and the right corona radiata were associated with non-amnestic MCI (naMCI). On logistic regression, the FA values in the left superior gyrus and MD values in the anterior cingulate distinguished aMCI from naMCI.Conclusions: MCI is associated with changes in white matter and subcortical regions as seen on DTI. Changes in some anterior brain regions distinguish aMCI from naMCI.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiaoping Tang ◽  
Xinlan Xiao ◽  
Jianhua Yin ◽  
Ting Yang ◽  
Bingliang Zeng

In order to assess the relationship between structural and functional imaging of cerebrovascular disease and cognition-related fibers, this paper chooses a total of 120 patients who underwent cerebral small vessel disease (CSVD) treatment at a designated hospital by this study from June 2013 to June 2018 and divides them into 3 groups according to the random number table method: vascular dementia (VaD) group, vascular cognitive impairment no dementia (VCIND) group, and noncognition impairment (NCI) group with 40 cases of patients in each group. Cognitive function measurement and imaging examination were performed for these 3 groups of patients, and the observation indicators of cognitive state examination (CSE), mental assessment scale (MAS), clock drawing test (CDT), adult intelligence scale (AIS), frontal assessment battery (FAB), verbal fluency test (VFT), trail making test (TMT), cognitive index (CI), white matter lesions (WML), third ventricle width (TVW), and frontal horn index (FHI) were tested, respectively. The results shows that the average scores of CSE, MAS, AIS, and VFT in the VaD and VCIND group are lower than those of the NCI group and the differences are statistically significant (P<0.05); the average scores of FAB, TMT, and CI in the VaD group are higher than those of the VCIND group and the differences are also statistically significant (P<0.05); the average scores of FHI and TVW in the VaD group are lower than those of the VCIND and NCI group with statistically significant differences (P<0.05); the average scores of WML, CDT, and AIS in the VaD group are higher than those of the VCIND and NCI group with statistically significant differences (P<0.05). Therefore, it is believed that the structural and functional imaging features of cerebrovascular disease are closely related to cognition-related fibers, and the incidence of white matter lesions is closely related to the degree of lesions and cognitive dysfunction of cerebral small vessel disease, in which a major risk factor for cognitive dysfunction in patients with small blood vessels is the severity of white matter lesions; brain imaging and neuropsychiatric function assessment can better understand the relationship between cerebrovascular disease and cognitive impairment. The results of this study provide a reference for the further research studies on the relationship between structural and functional imaging of cerebrovascular disease and cognition-related fibers.


2019 ◽  
Vol 25 (09) ◽  
pp. 950-960 ◽  
Author(s):  
Douglas P. Terry ◽  
Catherine M. Mewborn ◽  
L. Stephen Miller

AbstractObjective: Multiple concussions sustained in youth sport may be associated with later-life brain changes and worse cognitive outcomes. We examined the association between two or more concussions during high school football and later-life white matter (WM) microstructure (i.e., 22–47 years following football retirement) using diffusion tensor imaging (DTI). Method: Forty former high school football players aged 40–65 who received 2+ concussions during high school football (N = 20), or denied concussive events (N = 20) were recruited. Participants underwent neurocognitive testing and DTI scanning. Results: Groups did not statistically differ on age, education, or estimated pre-morbid intelligence. Tract-based Spatial Statistics (TBSS) correcting for Family-Wise Error (FWE)(p &lt; .05) did not yield differences between groups at the whole-brain level. Region of interest analyses showed higher mean diffusivity (MD) in the anterior limb of the internal capsule (ALIC) in the concussed group compared to the non-concussed former players. More liberal analyses (i.e., p &lt; .001, uncorrected for multiple comparisons, ≥8 voxels) also revealed that former players endorsing 2+ concussions had higher MD in the ALIC. Analyses that covaried for age did not reveal differences at either threshold. Concussive histories were not associated with worse cognitive functioning, nor did it impact the relationship between neuropsychological scores and DTI metrics. Discussion: Results suggest only minimal neuroanatomical brain differences in former athletes many years following original concussive injuries compared to controls.


Sign in / Sign up

Export Citation Format

Share Document