Repeated Sport-Related Concussion Shows Only Minimal White Matter Differences Many Years After Playing High School Football

2019 ◽  
Vol 25 (09) ◽  
pp. 950-960 ◽  
Author(s):  
Douglas P. Terry ◽  
Catherine M. Mewborn ◽  
L. Stephen Miller

AbstractObjective: Multiple concussions sustained in youth sport may be associated with later-life brain changes and worse cognitive outcomes. We examined the association between two or more concussions during high school football and later-life white matter (WM) microstructure (i.e., 22–47 years following football retirement) using diffusion tensor imaging (DTI). Method: Forty former high school football players aged 40–65 who received 2+ concussions during high school football (N = 20), or denied concussive events (N = 20) were recruited. Participants underwent neurocognitive testing and DTI scanning. Results: Groups did not statistically differ on age, education, or estimated pre-morbid intelligence. Tract-based Spatial Statistics (TBSS) correcting for Family-Wise Error (FWE)(p < .05) did not yield differences between groups at the whole-brain level. Region of interest analyses showed higher mean diffusivity (MD) in the anterior limb of the internal capsule (ALIC) in the concussed group compared to the non-concussed former players. More liberal analyses (i.e., p < .001, uncorrected for multiple comparisons, ≥8 voxels) also revealed that former players endorsing 2+ concussions had higher MD in the ALIC. Analyses that covaried for age did not reveal differences at either threshold. Concussive histories were not associated with worse cognitive functioning, nor did it impact the relationship between neuropsychological scores and DTI metrics. Discussion: Results suggest only minimal neuroanatomical brain differences in former athletes many years following original concussive injuries compared to controls.

2017 ◽  
Vol 29 (5) ◽  
pp. 1735-1747 ◽  
Author(s):  
Layla Banihashemi ◽  
Meredith L. Wallace ◽  
Lei K. Sheu ◽  
Michael C. Lee ◽  
Peter J. Gianaros ◽  
...  

AbstractLimbic white matter pathways link emotion, cognition, and behavior and are potentially malleable to the influences of traumatic events throughout development. However, the impact of interactions between childhood and later life trauma on limbic white matter pathways has yet to be examined. Here, we examined whether childhood maltreatment moderated the effect of combat exposure on diffusion tensor imaging measures within a sample of military veterans (N = 28). We examined five limbic tracts of interest: two components of the cingulum (cingulum, cingulate gyrus, and cingulum hippocampus [CGH]), the uncinate fasciculus, the fornix/stria terminalis, and the anterior limb of the internal capsule. Using effect sizes, clinically meaningful moderator effects were found only within the CGH. Greater combat exposure was associated with decreased CGH fractional anisotropy (overall structural integrity) and increased CGH radial diffusivity (perpendicular water diffusivity) among individuals with more severe childhood maltreatment. Our findings provide preliminary evidence of the moderating effect of childhood maltreatment on the relationship between combat exposure and CGH structural integrity. These differences in CGH structural integrity could have maladaptive implications for emotion and memory, as well as provide a potential mechanism by which childhood maltreatment induces vulnerability to later life trauma exposure.


Cephalalgia ◽  
2012 ◽  
Vol 33 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Dahua Yu ◽  
Kai Yuan ◽  
Wei Qin ◽  
Ling Zhao ◽  
Minghao Dong ◽  
...  

Aim Multiple diffusion tensor imaging (DTI) derived indices may help to deduce the pathophysiological type of white matter (WM) changes and provide more specific biomarkers of WM neuropathology in the whole brain of migraine patients without aura (MWoA). Methods Twenty MWoA and 20 age-, education- and gender-matched healthy volunteers participated in this study. Tract-based spatial statistics (TBSS) was employed to investigate the WM abnormalities in MWoA by integrating multiple indices, including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). Results Compared with healthy controls, MWoA showed significantly lower FA, MD and AD in multiple brain regions, whereas no difference in RD was observed. Specifically, the overlap among the lower FA, MD, and AD was found in the genu, body, and splenium part of the corpus callosum (CC), the right anterior limb of the internal capsule (ALIC) and the posterior limb of the internal capsule (PLIC) in MWoA compared with healthy controls. Additionally, some of the above WM findings were significantly correlated with duration and headache frequency in MWoA. Conclusion Given that decreased AD may suggest axonal loss, our findings may reveal axonal loss in MWoA.


2011 ◽  
Vol 115 (1) ◽  
pp. 130-139 ◽  
Author(s):  
Makoto Matsushita ◽  
Kohkichi Hosoda ◽  
Yasuo Naitoh ◽  
Haruo Yamashita ◽  
Eiji Kohmura

Object Traumatic brain injury (TBI) often impairs cognitive function. Diffusion tensor (DT) imaging, a novel modality, permits evaluation of the effects of head trauma on white matter nerve fibers. The objectives of the current study were to investigate where the white matter injury following mild to moderate TBI is specifically located on DT imaging in the acute disease stage and to examine the relationship between the severity of the white matter lesion on DT imaging in the acute stage of TBI and future cognitive function in the chronic disease stage. Methods Twenty adult patients with mild to moderate TBI (Glasgow Coma Scale score between 9 and 15) underwent conventional MR and DT imaging a median of 3.5 days after injury, and 27 matched healthy controls also underwent both imaging modalities. The patients with TBI were further subdivided into 2 groups, that is, mild and more severe TBI groups, based on clinical (mild or moderate TBI), CT (diffuse brain injury [DBI] I or II), or MR imaging (normal or pathological appearance) classification. Fractional anisotropies (FAs) were compared between patients and controls using the region of interest method. Regions of interest were located in 8 different areas including the genu, stem, and splenium of the corpus callosum and the corona radiata (CR), anterior limb of the internal capsule (ALIC), posterior limb of the internal capsule (PLIC), frontal white matter (FWM), and occipital white matter (OWM) of the periventricular white matter. Eleven patients with TBI also underwent neuropsychological testing, which included the Trail Making Test, Wisconsin Card Sorting Test, Wechsler Adult Intelligence Scale–Revised, and P300 testing in the chronic disease stage (median 364 days). Results Region of interest analysis demonstrated significantly lower FA values in the genu, stem, and splenium of the corpus callosum in more severe TBI groups (moderate TBI on clinical classification, DBI II on CT classification, and pathological appearance on MR imaging classification) than in controls. A significant difference was also observed in the FA of the splenium between controls and the mild TBI group of the clinical classification. No significant difference was observed in the FA of the CR, ALIC, PLIC, FWM, and OWM between controls and any of the TBI groups of clinical or imaging classifications. No significant difference was observed in the FA of any regions between mild and more severe TBI groups of the clinical or imaging classifications. Multiple regression analysis showed a statistically significant positive linear relationship between FA in the splenium and total IQ (r = 0.79, p = 0.004). A significant negative linear relationship between FA in the FWM and P300 latency was also observed (r = 0.62, p = 0.04). Conclusions Fractional anisotropy reductions in the splenium and FWM in the acute stage of mild to moderate TBI may be a useful prognostic factor for long-term cognitive dysfunction.


CNS Spectrums ◽  
2011 ◽  
Vol 16 (5) ◽  
pp. 101-109 ◽  
Author(s):  
Leonardo F. Fontenelle ◽  
Ivanei E. Bramati ◽  
Jorge Moll ◽  
Mauro V. Mendlowicz ◽  
Ricardo de Oliveira-Souza ◽  
...  

AbstractIntroductionThe aim of this study was to investigate white matter (WM) abnormalities in obsessive-compulsive disorder (OCD) and its relationship to severity of obsessive-compulsive symptoms.MethodsConventional and diffusion tensor imaging were acquired in nine patients with OCD and nine gender- and age-matched healthy volunteers. Changes in fractional anisotropy (FA) and mean diffusivity (MD) were investigated using selected regions of interest (ROIs) analyses and whole brain tract-based spatial statistic analyses. A priori ROIs were placed bilaterally in internal capsule (IC), superior longitudinal fascicule (SLF), cingulate bundle (CB), and corpus calosum (CC).ResultsROIs analyses showed that, as compared to healthy volunteers, patients with OCD exhibited reduced FA values bilaterally in regions of the posterior limb of the IC and in the SLF and increased MD values bilaterally in the posterior limb of the IC, in the left CB, and in the splenium of CC. Voxelwise analysis showed that, as compared to controls, patients with OCD exhibited reduced FA and increased MD in regions of the cortical spinal tract (genu and posterior limb of internal capsule and corona radiata) and the SLF. Severity of OCD correlated with WM alterations in different brain regions, ie, the left (rho=0.70 [MD]) and right (rho=0.70 [MD]) anterior limb of the IC, the left (rho=0.97 [MD]) and right SLF (rho=0.81 [MD]), and the genu of CC (rho=0.66 [MD]; rho=-0.69 [FA]).ConclusionOur findings support the involvement of different WM tracts in OCD and suggest that greater impairment in WM integrity is associated with increased severity of OCD symptoms.


2020 ◽  
Vol 61 (12) ◽  
pp. 1677-1683 ◽  
Author(s):  
Kerim Aslan ◽  
Hediye Pinar Gunbey ◽  
Sumeyra Cortcu ◽  
Onur Ozyurt ◽  
Ugur Avci ◽  
...  

Background Metabolic, morphological, and functional brain changes associated with a neurological deficit in hyperthyroidism have been observed. However, changes in microstructural white matter (WM), which can explain the underlying pathophysiology of brain dysfunctions, have not been researched. Purpose To assess microstructural WM abnormality in patients with untreated or newly diagnosed hyperthyroidism using tract-based spatial statistics (TBSS). Material and Methods Eighteen patients with hyperthyroidism and 14 age- and sex-matched healthy controls were included in this study. TBSS were used in this diffusion tensor imaging study for a whole-brain voxel-wise analysis of fractional anisotropy, mean diffusivity, axial diffusivity (AD), and radial diffusivity (RD) of WM. Results When compared to the control group, TBSS showed a significant increase in the RD of the corpus callosum, anterior and posterior corona radiata, posterior thalamic radiation, cingulum, superior longitudinal fasciculus, and the retrolenticular region of the internal capsule in patients with hyperthyroidism ( P < 0.05), as well as a significant decrease in AD in the anterior corona radiata and the genu of corpus callosum ( P < 0.05). Conclusion This study showed that more regions are affected by the RD increase than the AD decrease in the WM tracts of patients with hyperthyroidism. These preliminary results suggest that demyelination is the main mechanism of microstructural alterations in the WM of hyperthyroid patients.


2021 ◽  
Author(s):  
Jie Chen ◽  
Yanxuan Li ◽  
Nengzhi Xia ◽  
Caiyun Wen ◽  
Tianyi Xia ◽  
...  

Abstract Background: Previous studies have reported changes in white matter (WM) microstructures in patients with insomnia. However, few neuroimaging studies have focused specifically on WM tracts in insomnia patients after having received treatment. In this prospective study, diffusion-tensor imaging was used in two samples of heart-kidney imbalance insomnia patients (HKIIPs) who were treated with Jiao-Tai-Wan (JTW) or a placebo to assess the changes in WM tracts.Methods: Tract-based spatial statistical analyses were first applied to compare the changes in mean diffusivity (MD) and fractional anisotropy (FA) of WM between 75 HKIIPs and 41 healthy control participants. In subsequent randomized, double-blind, placebo-controlled trials, comparisons of MD and FA were also performed in 24 HKIIPs (8 males; 16 females; 42.5 ± 10.4 years) with JTW and 26 HKIIPs (11 males; 15 females; 39.7 ± 9.4 years) with a placebo, with age and sex as covariates.Results: HKIIPs showed lower MD and FA values of several WM tracts than healthy control participants, such as the bilateral anterior limb of internal capsule, bilateral superior longitudinal fasciculus and bilateral posterior corona radiata. Specifically, FA values in left corticospinal tract (CST) were increased in HKIIPs. After being treated with JTW, HKIIPs showed a trend towards reduced FA values in the left CST.Conclusions: These results suggest that JTW may reverse WM alterations caused by heart-kidney imbalance insomnia.Trial registration: Chinese Clinical Trial Registry, ChiCTR1800019239; registered on 1 November 2018-retrospectively registered, http://www.chictr.org.cn/listbycreater.aspx, more than a month after the start of the experiment. The delay was due to lack of experience regarding trail, registration with a data sharing website.


2021 ◽  
Vol 80 (2) ◽  
pp. 567-576
Author(s):  
Fei Han ◽  
Fei-Fei Zhai ◽  
Ming-Li Li ◽  
Li-Xin Zhou ◽  
Jun Ni ◽  
...  

Background: Mechanisms through which arterial stiffness impacts cognitive function are crucial for devising better strategies to prevent cognitive decline. Objective: To examine the associations of arterial stiffness with white matter integrity and cognition in community dwellings, and to investigate whether white matter injury was the intermediate of the associations between arterial stiffness and cognition. Methods: This study was a cross-sectional analysis on 952 subjects (aged 55.5±9.1 years) who underwent diffusion tensor imaging and measurement of brachial-ankle pulse wave velocity (baPWV). Both linear regression and tract-based spatial statistics were used to investigate the association between baPWV and white matter integrity. The association between baPWV and global cognitive function, measured as the mini-mental state examination (MMSE) was evaluated. Mediation analysis was performed to assess the influence of white matter integrity on the association of baPWV with MMSE. Results: Increased baPWV was significantly associated with lower mean global fractional anisotropy (β= –0.118, p < 0.001), higher mean diffusivity (β= 0.161, p < 0.001), axial diffusivity (β= 0.160, p < 0.001), and radial diffusivity (β= 0.147, p < 0.001) after adjustment of age, sex, and hypertension, which were measures having a direct effect on arterial stiffness and white matter integrity. After adjustment of age, sex, education, apolipoprotein E ɛ4, cardiovascular risk factors, and brain atrophy, we found an association of increased baPWV with worse performance on MMSE (β= –0.093, p = 0.011). White matter disruption partially mediated the effect of baPWV on MMSE. Conclusion: Arterial stiffness is associated with white matter disruption and cognitive decline. Reduced white matter integrity partially explained the effect of arterial stiffness on cognition.


2021 ◽  
pp. 0271678X2199098
Author(s):  
Saima Hilal ◽  
Siwei Liu ◽  
Tien Yin Wong ◽  
Henri Vrooman ◽  
Ching-Yu Cheng ◽  
...  

To determine whether white matter network disruption mediates the association between MRI markers of cerebrovascular disease (CeVD) and cognitive impairment. Participants (n = 253, aged ≥60 years) from the Epidemiology of Dementia in Singapore study underwent neuropsychological assessments and MRI. CeVD markers were defined as lacunes, white matter hyperintensities (WMH), microbleeds, cortical microinfarcts, cortical infarcts and intracranial stenosis (ICS). White matter microstructure damage was measured as fractional anisotropy and mean diffusivity by tract based spatial statistics from diffusion tensor imaging. Cognitive function was summarized as domain-specific Z-scores. Lacunar counts, WMH volume and ICS were associated with worse performance in executive function, attention, language, verbal and visual memory. These three CeVD markers were also associated with white matter microstructural damage in the projection, commissural, association, and limbic fibers. Path analyses showed that lacunar counts, higher WMH volume and ICS were associated with executive and verbal memory impairment via white matter disruption in commissural fibers whereas impairment in the attention, visual memory and language were mediated through projection fibers. Our study shows that the abnormalities in white matter connectivity may underlie the relationship between CeVD and cognition. Further longitudinal studies are needed to understand the cause-effect relationship between CeVD, white matter damage and cognition.


2009 ◽  
Vol 21 (7) ◽  
pp. 1406-1421 ◽  
Author(s):  
Elizabeth A. Olson ◽  
Paul F. Collins ◽  
Catalina J. Hooper ◽  
Ryan Muetzel ◽  
Kelvin O. Lim ◽  
...  

Healthy participants (n = 79), ages 9–23, completed a delay discounting task assessing the extent to which the value of a monetary reward declines as the delay to its receipt increases. Diffusion tensor imaging (DTI) was used to evaluate how individual differences in delay discounting relate to variation in fractional anisotropy (FA) and mean diffusivity (MD) within whole-brain white matter using voxel-based regressions. Given that rapid prefrontal lobe development is occurring during this age range and that functional imaging studies have implicated the prefrontal cortex in discounting behavior, we hypothesized that differences in FA and MD would be associated with alterations in the discounting rate. The analyses revealed a number of clusters where less impulsive performance on the delay discounting task was associated with higher FA and lower MD. The clusters were located primarily in bilateral frontal and temporal lobes and were localized within white matter tracts, including portions of the inferior and superior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus, inferior fronto-occipital fasciculus, corticospinal tract, and splenium of the corpus callosum. FA increased and MD decreased with age in the majority of these regions. Some, but not all, of the discounting/DTI associations remained significant after controlling for age. Findings are discussed in terms of both developmental and age-independent effects of white matter organization on discounting behavior.


Sign in / Sign up

Export Citation Format

Share Document