Protective Effect of Solutions Containing Polymers Associated with Fluoride and Stannous Chloride on Hydroxyapatite Dissolution

2021 ◽  
pp. 1-8
Author(s):  
Marina Gullo Augusto ◽  
Tamires Maria de Andrade Santos ◽  
Taís Scaramucci ◽  
Idalina Vieira Aoki ◽  
Carlos Rocha Gomes Torres ◽  
...  

This study investigated the protective effect of experimental solutions containing 4 polymers (polyoxirane, hydroxypropylmethylcellulose [HPMC], pectin, and an amino methacrylate copolymer [AMC]) in 2 concentrations (low and high) associated or not with sodium fluoride (F; 225 ppm F<sup>–</sup>) or sodium fluoride plus stannous chloride (FS; 800 ppm Sn<sup>2+</sup>) on the dissolution of hydroxyapatite crystals (HA). Deionized water was the control. The pretreated HA was added to a 0.3% citric acid solution (pH 3.8). An automatic titrant machine added aliquots of 0.1 N HCl at a rate of 28 μL/min, in a total reaction time of 5 min. Groups were compared with 2-way ANOVA and Tukey’s test, and concentrations with Student <i>t</i> test (5%). The zeta potential of the HA treated with the solutions was measured. Significant differences were found for both factors and interaction (<i>p</i> &#x3c; 0.0001). The treatments with F and FS solutions resulted in a lower amount of dissolved HA than the control. Among the polymers’ solutions, only AMC was able to reduce the amount of dissolved HA, changing the surface charge of HA to positive. AMC improved the protective effect of F, but it did not affect FS. Polyoxirane and HPMC reduced the protective potential of the FS solution. No differences were found between the concentrations of the polymers. It was concluded that F and FS reduced the amount of dissolved HA. The protective effect of the experimental solutions against HA dissolution was polymer dependent. The F effect was enhanced by its combination with AMC, but the protection of FS was impaired by polyoxirane and HPMC.

2016 ◽  
Vol 50 (2) ◽  
pp. 104-110 ◽  
Author(s):  
Taís Scaramucci ◽  
Samira Helena João-Souza ◽  
Frank Lippert ◽  
George J. Eckert ◽  
Idalina V. Aoki ◽  
...  

This study evaluated the influence of toothbrushing on the antierosive effect of solutions containing sodium fluoride (225 ppm/F), stannous chloride (800 ppm/Sn), sodium linear polyphosphate (2%/LPP), and their combinations, and deionized water as negative control (C). Solutions were tested in a 5-day erosion-remineralization-abrasion cycling model, using enamel and dentin specimens (n = 8). Erosion was performed 6 times/day for 5 min, exposure to the test solutions 3 times/day for 2min, and toothbrushing (or not) with toothpaste slurry 2 times/day for 2 min (45 strokes). Surface loss (SL) was determined by noncontact profilometry. Data were analyzed using three-way ANOVA (α = 0.05). Brushing caused more SL than no brushing for enamel (mean ± SD, in micrometers: 52.7 ± 6.6 and 33.0 ± 4.5, respectively), but not for dentin (28.2 ± 1.9 and 26.6 ± 1.8, respectively). For enamel without brushing, F+LPP+Sn showed the lowest SL (23.8 ± 3.4), followed by F+Sn (30.6 ± 4.9) and F+LPP (31.7 ± 1.7), which did not differ from each other. No differences were found between the other groups and C (37.8 ± 2.1). When brushing, F+LPP+Sn exhibited the lowest SL (36.7 ± 2.4), not differing from F+LPP (39.1 ± 1.8). F, F+Sn and LPP+Sn were similar (46.7 ± 2.9, 42.1 ± 2.8 and 45.3 ± 4.6, respectively) and better than C (52.7 ± 4.3). Sn (55.0 ± 2.4) and LPP (51.0 ± 4.3) did not differ from C. For dentin, neither groups differed from C, regardless of brushing. In conclusion, toothbrushing did not affect the antierosive effect of F+Sn, F+LPP and F+LPP+Sn on enamel, although overall it led to more erosion than nonbrushing. F and LPP+Sn showed a protective effect only under brushing conditions, whereas Sn and LPP did not exhibit any protection. For dentin, neither toothbrushing nor the test solutions influenced the development of erosion.


2018 ◽  
Vol 53 (3) ◽  
pp. 305-313 ◽  
Author(s):  
Sávio J.C. Bezerra ◽  
Samira H. João-Souza ◽  
Idalina V. Aoki ◽  
Alessandra B. Borges ◽  
Anderson T. Hara ◽  
...  

The aim of this study was to evaluate the anti-erosive effect of solutions containing sodium fluoride (F: 225 ppm F–), stannous chloride (Sn: 800 ppm Sn2+), and some film-forming polymers (Gantrez: Poly [methylvinylether-alt-maleic anhydride]; PGA: propylene glycol alginate; Plasdone: poly[vinylpyrrolidone]; and CMC: carboxymethylcellulose). Solutions were tested in an erosion-remineralization cycling model, using enamel and dentin specimens (n = 10, for each substrate). Distilled water was the negative control. Cycling consisted of 120 min immersion in human saliva, 5 min in 0.3% citric acid solution, and 120 min of exposure to human saliva, 4×/day, for 5 days. Treatment with solutions (pH = 4.5) was carried out 2×/day, for 2 min. Surface loss (SL) was evaluated with optical profilometry. Zeta potential of hydroxyapatite crystals was determined after treatment with the solutions. Data were statistically analyzed (α = 0.05). For enamel, all polymers showed significantly lower SL (in µm) than the control (11.09 ± 0.94), except PGA (10.15 ± 1.25). PGA significantly improved the protective effect of F (4.24 ± 0.97 vs. 5.64 ± 1.60, respectively). None of the polymers increased the protection of F+Sn (5.13 ± 0.78). For dentin, only Gantrez (11.40 ± 0.97) significantly reduced SL when compared with the negative control (12.76 ± 0.75). No polymer was able to enhance the effect of F (6.28 ± 1.90) or F+Sn (7.21 ± 1.13). All fluoridated solutions demonstrated significantly lower SL values than the control for both substrates. Treatment of hydroxyapatite nanoparticles with all solutions resulted in more negative zeta potentials than those of the control, except Plasdone, PGA, and F+Sn+PGA, the latter two presenting the opposite effect. In conclusion, Gantrez, Plasdone, and CMC exhibited an anti-erosive effect on enamel. PGA increased the protection of F. For dentin, only Gantrez reduced erosion.


2020 ◽  
Vol 54 (5-6) ◽  
pp. 517-523
Author(s):  
Letícia Oba Sakae ◽  
Samira Helena Niemeyer ◽  
Sávio José Cardoso Bezerra ◽  
Alessandra Buhler Borges ◽  
Cecilia Pedroso Turssi ◽  
...  

The aim of this study was to evaluate the protective effect of propylene glycol alginate (PGA) associated with sodium fluoride (NaF) against enamel erosion and erosion-abrasion. A 4-phase, split-mouth, double-blind, crossover in situ trial was conducted with the following solutions: F + PGA (225 ppm F<sup>–</sup> + 0.1% PGA), F (225 ppm F<sup>–</sup>), F + Sn (225 ppm F<sup>–</sup> + SnCl<sub>2</sub>, 800 ppm Sn<sup>2+</sup>), and negative control (distilled water). In each phase, 12 subjects wore removable mandibular appliances containing 4 enamel specimens, which were submitted either to erosion or to erosion-abrasion challenges for 5 days. Acquired salivary pellicle was formed in situ for 2 h. Erosion-abrasion consisted of acid challenge (1% citric acid solution, pH 2.3, 5 min, 4×/day), exposure to saliva in situ (2 h, 4×/day), brushing (5 s, total 2 min exposure to the slurry), and treatment with the solutions (2 min, 2×/day). For erosion, the same procedures were performed, without brushing. At the end, surface loss (SL; in μm) was evaluated by means of optical profilometry. KOH-soluble fluoride was quantified for erosion-only groups using extra specimens. For both challenges, the SL values found for F + PGA did not differ significantly from those of F and the negative control, and the SL value shown for F + Sn was significantly the lowest. Erosion-abrasion promoted significantly higher SL values than erosion. KOH-soluble fluoride analysis showed that F + Sn had a higher fluoride concentration in comparison with the negative control and F, while F + PGA did not differ from any of the other groups. In conclusion, PGA was not able to improve the protective effect of NaF against erosive enamel wear.


1992 ◽  
Vol 71 (3_suppl) ◽  
pp. 867-870 ◽  
Author(s):  
S. Kashket ◽  
L.R. Lopez

Studies demonstrated the effects of single rinses with low concentrations of NaF on the intra-oral demineralization of enamel. Blocks of bovine enamel were covered with Streptococcus mutans IB1600, mounted in palatal appliances, and worn in the mouths of volunteers for specified times. Subjects rinsed with solutions of NaF, with or without sucrose. Demineralization was determined as changes in iodide penetrability (delta Ip) of the enamel, while the pH and F of the streptococcal plaque, and enamel F, were determined with ion-specific electrodes. Delta Ip was reduced by about 80% (from 14.5 ± 2.7 to 2.8 ± 2.3 units) when 250 μg F/mL was added to the sucrose rinse. Corresponding plaque pH's were 4.1 ± 0.5 and 4.2 ± 0.3, consistent with a lack of effect on bacterial acidogenesis. Protection against mineral loss was concentration-dependent. Administration of sucrose at different times after NaF revealed that the effect of F persisted for at least 60 min. Analyses of plaque F demonstrated an initial elevation and concentration within the cells, followed by a drop to stable, baseline values. Enamel F increased slowly to almost 500 μg/g enamel after 105 min. The protective effect of F appeared to be manifested in two stages, the first related to a high plaque F and the second to F that became incorporated into the enamel. Analysis of the data suggested that F was transferred from plaque to enamel during the experimental period.


Sign in / Sign up

Export Citation Format

Share Document