Schweres Lungenemphysem: Zusammenhänge zwischen klinischen Verläufen nach bronchoskopischer Volumenreduktion und metabolischen Parametern erkennen

2021 ◽  
pp. 1-2
Author(s):  
Manfred Wagner

<b>Background:</b> Hypermetabolism and muscle wasting frequently occur in patients with severe emphysema. Improving respiratory mechanics by bronchoscopic lung volume reduction (BLVR) might contribute to muscle maintenance by decreasing energy requirements and alleviating eating-related dyspnoea. <b>Objective:</b> The goal was to assess the impact of BLVR on energy balance regulation. <b>Design:</b> Twenty emphysematous subjects participated in a controlled clinical experiment before and 6 months after BLVR. Energy requirements were assessed: basal metabolic rate (BMR) by ventilated hood, total daily energy expenditure (TDEE) by doubly labelled water, whole body fat-free mass (FFM) by deuterium dilution, and physical activity by accelerometry. Oxygen saturation, breathing rate, and heart rate were monitored before, during, and after a standardized meal via pulse oximetry and dyspnoea was rated. <b>Results:</b> Sixteen patients completed follow-up, and among those, 10 patients exceeded the minimal clinically important difference of residual volume (RV) reduction. RV was reduced with median (range) 1,285 mL (–2,430, –540). Before BLVR, 90% of patients was FFM-depleted despite a normal BMI (24.3 ± 4.3 kg/m2). BMR was elevated by 130%. TDEE/BMR was 1.4 ± 0.2 despite a very low median (range) daily step count of 2,188 (739, 7,110). Following BLVR, the components of energy metabolism did not change significantly after intervention compared to before intervention, but BLVR treatment decreased meal-related dyspnoea (4.1 vs. 1.7, <i>p</i> = 0.019). <b>Conclusions:</b> Impaired respiratory mechanics in hyperinflated emphysematous patients did not explain hypermetabolism. <b>Clinical Trial Registry Number:</b> NCT02500004 at www.clinicaltrial.gov.

Respiration ◽  
2021 ◽  
pp. 1-8
Author(s):  
Karin Sanders ◽  
Karin Klooster ◽  
Lowie E.G.W. Vanfleteren ◽  
Guy Plasqui ◽  
Anne-Marie Dingemans ◽  
...  

<b><i>Background:</i></b> Hypermetabolism and muscle wasting frequently occur in patients with severe emphysema. Improving respiratory mechanics by bronchoscopic lung volume reduction (BLVR) might contribute to muscle maintenance by decreasing energy requirements and alleviating eating-related dyspnoea. <b><i>Objective:</i></b> The goal was to assess the impact of BLVR on energy balance regulation. <b><i>Design:</i></b> Twenty emphysematous subjects participated in a controlled clinical experiment before and 6 months after BLVR. Energy requirements were assessed: basal metabolic rate (BMR) by ventilated hood, total daily energy expenditure (TDEE) by doubly labelled water, whole body fat-free mass (FFM) by deuterium dilution, and physical activity by accelerometry. Oxygen saturation, breathing rate, and heart rate were monitored before, during, and after a standardized meal via pulse oximetry and dyspnoea was rated. <b><i>Results:</i></b> Sixteen patients completed follow-up, and among those, 10 patients exceeded the minimal clinically important difference of residual volume (RV) reduction. RV was reduced with median (range) 1,285 mL (−2,430, −540). Before BLVR, 90% of patients was FFM-depleted despite a normal BMI (24.3 ± 4.3 kg/m<sup>2</sup>). BMR was elevated by 130%. TDEE/BMR was 1.4 ± 0.2 despite a very low median (range) daily step count of 2,188 (739, 7,110). Following BLVR, the components of energy metabolism did not change significantly after intervention compared to before intervention, but BLVR treatment decreased meal-related dyspnoea (4.1 vs. 1.7, <i>p</i> = 0.019). <b><i>Conclusions:</i></b> Impaired respiratory mechanics in hyperinflated emphysematous patients did not explain hypermetabolism. <b><i>Clinical Trial Registry Number:</i></b> NCT02500004 at www.clinicaltrial.gov.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1223
Author(s):  
Yosuke Yamada ◽  
Hiroyuki Sagayama ◽  
Aya Itoi ◽  
Makoto Nishimura ◽  
Kaori Fujisawa ◽  
...  

Adequate energy intake is essential for the healthy development of children, and the estimated energy requirement of children is determined by total daily energy expenditure (TDEE) and energy deposition for growth. A previous study in Japanese tweens indicated that TDEE could be estimated by fat-free mass (FFM) and step count. The aims of this study were to measure TDEE in Japanese preschool children and to confirm whether TDEE can be estimated by FFM and step count in preschool children. Twenty-one children aged 4–6 years old (11 girls and 10 boys; age, 5.1 (0.9) years; height, 107.2 (6.6) cm; weight, 17.5 (1.7) kg; BMI, 15.3 (1.3); mean (SD)) participated in this study. FFM and 7-day TDEE were obtained by doubly labeled water (DLW). Participants wore accelerometers during the DLW measurement period. No significant differences were observed in age-adjusted height, weight, BMI, FFM (13.0 (1.5) kg), or TDEE (1300 (174) kcal/day) between girls and boys. Girls had significantly higher percent fat and a lower daily step count than boys. Stepwise regression analysis revealed that FFM and step count were significant predictors of TDEE; TDEE (kcal/day) = 85.0 × FFM (kg) + 0.0135 × step count (steps/day). This accounted for 74% of TDEE variance. The current study confirmed that FFM and step count are major determinants of TDEE in Japanese preschool children as well as adolescents, although further research is needed to obtain precise equations.


1996 ◽  
Vol 80 (6) ◽  
pp. 2085-2096 ◽  
Author(s):  
C. M. Modlesky ◽  
K. J. Cureton ◽  
R. D. Lewis ◽  
B. M. Prior ◽  
M. A. Sloniger ◽  
...  

The purpose of this study was to determine whether the assumed density and composition of the fat-free mass (FFM) and estimates of percent fat (%Fat) from body density by use of the Siri equation (%Fatd) are valid in weight trainers with high musculoskeletal development. Measures of body density by underwater weighing (Db), body water by deuterium dilution, and bone mineral by whole body dual-energy X-ray absorptiometry were obtained in young white men: 14 weight trainers with high musculoskeletal development and 14 non-weight-training controls with average musculoskeletal development. %Fatd was significantly higher (P < or = 0.05) than %Fat estimated from body density, water, and mineral (%Fatd,w,m) by use of a four-component model in weight trainers (17.3 +/- 4.6 vs. 13.2 +/- 5.1%) but not in controls (14.8 +/- 3.1 vs. 14.2 +/- 3.6%). The greater discrepancy between %Fatd and %Fatd,w,m was explained by lower density of fat-free mass (Dffm) in weight trainers (1.089 +/- 0.005 g/ml) than in controls (1.099 +/- 0.007 g/ml). The lower Dffm in the weight trainers was due to higher water (74.8 +/- 1.2 vs. 72.6 +/- 20%) and lower mineral (5.3 +/- 0.6 vs. 5.9 +/- 0.4%) and protein (19.9 +/- 1.4 vs. 21.5 +/- 1.9%) fractions of the FFM. We conclude that, in young white men with high musculoskeletal development, Dffm is lower than the assumed value of 1.1 g/ml and %Fat is overestimated from Db by use of the Siri equation.


2001 ◽  
Vol 91 (3) ◽  
pp. 1259-1268 ◽  
Author(s):  
Melinda L. Millard-Stafford ◽  
Mitchell A. Collins ◽  
Christopher M. Modlesky ◽  
Teresa K. Snow ◽  
Linda B. Rosskopf

The impact of race and resistance training status on the assumed density of the fat-free mass (DFFM) and estimates of body fatness via hydrodensitometry (%FatD) vs. a four-component model (density, water, mineral; %FatD,W,M) were determined in 45 men: white controls (W; n = 15), black controls (B; n = 15), and resistance-trained blacks (B-RT; n = 15). Body density by hydrostatic weighing, body water by deuterium dilution, and bone mineral by dual-energy X-ray absorptiometry were used to estimate %FatD,W,M. DFFM was not different between B and W (or 1.1 g/ml); however, DFFM in B-RT was significantly lower (1.091 ± 0.012 g/ml; P < 0.05). Therefore, %FatD using the Siri equation was not different from %FatD,W,M in W (17.5 ± 5.0 vs. 18.3 ± 5.4%) or B (14.9 ± 5.6 vs. 15.7 ± 5.7%) but significantly overestimated %FatD,W,M in B-RT (14.0 ± 5.9 vs. 10.4 ± 6.0%; P < 0.05). The use of a race-specific equation (assuming DFFM = 1.113 g/ml) did not improve the agreement between %FatD and %FatD,W,M, resulting in a significantly greater mean (±SD) discrepancy for B (1.7 ± 1.8% fat) and B-RT (6.2 ± 4.3% fat). Thus race per se does not affect DFFM or estimates of %FatD; however, B-RT have a DFFMlower than 1.1 g/ml, leading to an overestimation of %FatD.


2018 ◽  
Vol 125 (2) ◽  
pp. 320-327 ◽  
Author(s):  
Corinna Geisler ◽  
Mark Hübers ◽  
Oliver Granert ◽  
Manfred J. Müller

Brain gray (GM) and white matter (WM) volumes are related to weight changes. The impact of structural variations in GM and WM on the variance in resting energy expenditure (REE) and the REE-on-fat-free mass (FFM) association is unknown. The aim of this study was to address this in healthy Caucasian subjects. Cross-sectional data analysis of 493 healthy Caucasian subjects (age range 6–80 years; 3 age groups) was conducted with comprehensive information on FFM, organ and tissue masses, and detailed brain composition as assessed by whole body magnetic resonance imaging and REE (assessed by indirect calorimetry). REE was calculated (REEc) using organ and tissue masses times their specific metabolic rates. FFM was the major determinant of REE (70.6%); individual masses of liver, total brain, and heart explained a further 2.1% of the variance in REE. Replacing total brain with GM and WM did not change the total R2. Nevertheless, GM added more to the variance in REE (5.6%) and corresponding residuals (12.5%) than did total brain. Additionally, up to 12% was explained by age and sex (<2%). There was a systematic bias between REE and REEc with positive values in younger subjects but negative values in older ones. This bias remained after substituting the specific metabolic rate of brain with the specific metabolic rates of GM and WM. In healthy Caucasian subjects, GM and WM contributed to the variance in REE. Detailed brain structures do not explain the bias between REE and REEc.NEW & NOTEWORTHY Detailed brain composition (gray and white matter) contributed to the variances of resting energy expenditure (REE) and REE-on-fat-free mass residuals. Gray matter explained most of the variances, and for future studies on energy expenditure, brain compartments should be analyzed separately with regard to their different energy needs.


2021 ◽  
pp. 1-10
Author(s):  
Varvara Kanti ◽  
Lia Puder ◽  
Irina Jahnke ◽  
Philipp Maximilian Krabusch ◽  
Jan Kottner ◽  
...  

<b><i>Background and Objectives:</i></b> Gene mutations within the leptin-melanocortin signaling pathway lead to severe early-onset obesity. Recently, a phase 2 trial evaluated new pharmacological treatment options with the MC4R agonist <i>setmelanotide</i> in patients with mutations in the genes encoding proopiomelanocortin (POMC) and leptin receptor (LEPR). During treatment with <i>setmelanotide,</i> changes in skin pigmentation were observed, probably due to off-target effects on the closely related melanocortin 1 receptor (MC1R). Here, we describe in detail the findings of dermatological examinations and measurements of skin pigmentation during this treatment over time and discuss the impact of these changes on patient safety. <b><i>Methods:</i></b> In an investigator-initiated, phase 2, open-label pilot study, 2 patients with loss-of-function POMC gene mutations and 3 patients with loss-of-function variants in LEPR were treated with the MC4R agonist <i>setmelanotide</i>. Dermatological examination, dermoscopy, whole body photographic documentation, and spectrophotometric measurements were performed at screening visit and approximately every 3 months during the course of the study. <b><i>Results:</i></b> We report the results of a maximum treatment duration of 46 months. Skin pigmentation increased in all treated patients, as confirmed by spectrophotometry. During continuous treatment, the current results indicate that elevated tanning intensity levels may stabilize over time. Lips and nevi also darkened. In red-haired study participants, hair color changed to brown after initiation of <i>setmelanotide</i> treatment. <b><i>Discussion:</i></b> <i>Setmelanotide</i> treatment leads to skin tanning and occasionally hair color darkening in both POMC- and LEPR-deficient patients. No malignant skin changes were observed in the patients of this study. However, the results highlight the importance of regular skin examinations before and during MC4R agonist treatment.


Author(s):  
Xiaming Du ◽  
Chao Zhang ◽  
Xiangqi Zhang ◽  
Zhen Qi ◽  
Sulin Cheng ◽  
...  

This study investigated the impact of Nordic walking on bone properties in postmenopausal women with pre-diabetes and non-alcohol fatty liver disease (NAFLD). A total of 63 eligible women randomly participated in the Nordic walking training (AEx, n = 33), or maintained their daily lifestyle (Con, n = 30) during intervention. Bone mineral content (BMC) and density (BMD) of whole body (WB), total femur (TF), femoral neck (FN), and lumbar spine (L2-4) were assessed by dual-energy X-ray absorptiometry. Serum osteocalcin, pentosidine, receptor activator of nuclear factor kappa-B ligand (RANKL) levels were analyzed by ELISA assay. After an 8.6-month intervention, the AEx group maintained their BMCTF, BMDTF, BMCL2−4, and BMDL2−4, and increased their BMCFN (p = 0.016), while the Con group decreased their BMCTF (p = 0.008), BMDTF (p = 0.001), and BMDL2−4 (p = 0.002). However, no significant group × time interaction was observed, except for BMDL2−4 (p = 0.013). Decreased pentosidine was correlated with increased BMCWB(r = −0.352, p = 0.019). The intervention has no significant effect on osteocalcin and RANKL. Changing of bone mass was associated with changing of pentosidine, but not with osteocalcin and RANKL. Our results suggest that Nordic walking is effective in preventing bone loss among postmenopausal women with pre-diabetes and NAFLD.


2021 ◽  
pp. 147715352098742
Author(s):  
FŞ Yilmaz

Office buildings are building typologies where efficient and optimal use of lighting energy is crucial while providing comfortable visual environments. The purpose of this study is to explore the impact of diverse architectural design alternatives on lighting energy requirements and lighting energy saving possibilities through a case study. In this study, a total of 3888 design alternatives are investigated in a comparative way in terms of daylighting system design alternatives, artificial lighting system design scenarios, artificial lighting system control types and shading system control options. Introducing the adaptation process of the EN 15193-1:2017 standard for Turkey’s specific climatic and geographical conditions and considering diverse lighting design scenarios, results of this parametric study aim to underline the significance of architectural design strategies in office buildings for the reduction of lighting energy requirements.


Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Gabriela Wojciak ◽  
Jadwiga Szymura ◽  
Zbigniew Szygula ◽  
Joanna Gradek ◽  
Magdalena Wiecek

Background: The activity of antioxidant enzymes and sirtuins (Sirt) decreases along with age, which is counteracted by aerobic training. Sirtuins increase antioxidant defence. Whole-body cryotherapy (WBC) increases total antioxidant capacity (TAC) in young men. The aim of our study was to assess the impact of 24 WBC treatments on the blood concentration of selected sirtuins and the level of antioxidant defence as well as oxidative stress index of training and non-training men depending on age. Methods: The study involved 40 males. In each group, there were 10 non-training older and young men (60 NTR and 20 NTR), and 10 older and young long-distance runners (60 TR, 20 TR). During an 8-week period, participants underwent 24 WBC treatments (3 min −130 °C), which were performed three times a week (Monday, Wednesday, Friday). The concentrations of Sirt1, Sirt3, TAC, total oxidative status and the activity of superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) in the blood were determined before 1 WBC and after 1 WBC, 12 WBC and 24 WBC. Results: After 1 WBC, the activity of GPx and the concentration of Sirt1 and TAC in 60 TR and TAC in 60 NTR increased. After 12 WBC, the level of Sirt1 in 20 NTR and SOD in 20 TR increased. After 24 WBC, the level of Sirt1 increased in 60 TR and in 20 NTR, Sirt3 in 60 TR and SOD in 20 TR. Conclusions: Cryogenic temperatures increase blood levels of Sirt1 and Sirt3 and systemic antioxidant defence in men, but the effect is dependent on age, level of performed physical activity and the number of applied treatments.


Sign in / Sign up

Export Citation Format

Share Document