scholarly journals New modeling approach of laser communication in constellation and through atmospheric disturbances

2021 ◽  
Vol 10 (4) ◽  
pp. 2088-2099
Author(s):  
Hachemi Chenina ◽  
Djamel Benatia ◽  
M’ Hamed Boulakroune

Laser communication between satellites in the constellation and from the satellites to ground stations offers a gigantic data rate for the users. This principal advantage drives telecom companies to develop this technology to use it like a carrier signal, the most disadvantage of this technology is the need to very complicated pointing systems between the transmitter and the receiver due to a very small beam divergence, continually moving of satellites in orbits and the distance between the satellites (tens of thousands of kilometers). The laser beam suffers continuously from several factors like atmospheric turbulences, internal and external vibrations. All these factors lead to an increase in the bit errors rate and cause degradation in the communication quality. This paper deals with a new method of modelisation of external effects in transmission of signal light from a ground station to the satellite through atmospheric disturbances. Indeed, an in-depth investigation, of the influences of satellite vibrationsinlaser signal transmission between satellites constellation, has been conducted by studying the effect of the intensity of vibrations on the optical signal amplitude. Some solutions are proposed to improve the efficiency of optical satellites communications. 

2013 ◽  
Author(s):  
Lewis C. Roberts ◽  
Norman A. Page ◽  
Rick S. Burruss ◽  
Tuan N. Truong ◽  
Sharon Dew ◽  
...  

ACS Photonics ◽  
2018 ◽  
Vol 5 (6) ◽  
pp. 2328-2335 ◽  
Author(s):  
Upkar Kumar ◽  
Sviatlana Viarbitskaya ◽  
Aurélien Cuche ◽  
Christian Girard ◽  
Sreenath Bolisetty ◽  
...  

2021 ◽  
Author(s):  
Aleksandr A. Kashtanov ◽  
Mihail E. Pazhetnov ◽  
Elena V. Kashtanova ◽  
Evgeniy S. Koptev ◽  
Igor A. Furiaev

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Morio Toyoshima ◽  
Hideki Takenaka ◽  
Yozo Shoji ◽  
Yoshihisa Takayama ◽  
Masahiro Takeoka ◽  
...  

Satellite quantum key distribution is a promising technique that overcomes the limited transmission distance in optical-fiber-based systems. The polarization tracking technique is one of the key techniques in the satellite quantum key distribution. With free-space quantum key distribution between an optical ground station and a satellite, the photon polarization state will be changed according to the satellite movement. To enable polarization based quantum key distribution between mobile terminals, we developed a polarization-basis tracking scheme allowing a common frame of reference to be shared. It is possible to orient two platforms along a common axis by detecting the reference optical signal only on the receiver side with no prior information about the transmitter's orientation. We developed a prototype system for free-space quantum key distribution with the polarization-basis tracking scheme. Polarization tracking performance was 0.092° by conducting quantum key distribution experiments over a 1 km free space between two buildings in a Tokyo suburb.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Xia Xiang ◽  
Jiankang Chen ◽  
Hui Wang ◽  
Liang Pei ◽  
Zhenyu Wu

Ground-based synthetic aperture radar (GB-SAR) is a relatively new technique that can be used to monitor the deformation of large-volume targets, such as dams, slopes, and bridges. In this study, the permanent scatterer (PS) technique is used to address the issues encountered in the continuous monitoring of the external deformation of an arch-gravity dam in a hydraulic and hydropower engineering structure in Hubei, China; the technique includes large image data sizes, high accuracy requirements, a susceptibility of the monitoring data to atmospheric disturbances, complex phase unwrapping, and pronounced decoherence. Through an in-depth investigation of PS extraction methods, a combined PS selection (CPSS) method is proposed by fully taking advantage of the signal amplitude and phase information in the monitored scene. The principle and implementation of CPSS are primarily studied. In addition, preliminarily selected PS candidates are directly used to construct and update a triangular irregular network (TIN) to maintain the stability of the subsequent Delaunay TIN. To implement this method, a differential-phase standard-deviation threshold method is proposed to extract PSs that are highly spatially coherent and consistent. Finally, the proposed CPSS was applied to the safety monitoring of the dam. The monitoring results are compared with conventional inverted plumb line monitoring results, and the proposed CPSS is found to be effective and reliable.


Sign in / Sign up

Export Citation Format

Share Document