scholarly journals Novel load balancing approach based on ant colony optimization technique in cloud computing

2021 ◽  
Vol 10 (4) ◽  
pp. 2320-2326
Author(s):  
Yasameen A. Ghani Alyouzbaki ◽  
Muaayed F. Al-Rawi

The cloud is the framework in which communication is connected with virtual machines, data centers, hosts, and brokers. The broker searches for a highly reliable cloudlet virtual machine for execution. Vulnerability can occur in the network because of which framework gets overburden. A research strategy is introduced in this article to expand the fault tolerance of the framework. The proposed approach improvement depends on the algorithm of ant colony optimization (ACO) that can choose the better virtual machine on which is to migrate the cloudlet to reduce the execution time and energy consumption. The efficiency of the proposed approach simulated in terms of execution time, energy consumption and examined with CloudSim. The introduction is provided in this article with a detailed description of cloud computing and, in addition, green cloud computing with its models. This article also discussed the virtual machine (VM) in more depth in the introduction section, which allows cloud service providers to supervise cloud resources competently while dispensing with the need for human oversight. Then the article submitted and explained the related works with their discussion and then it explained the novel proposed load balancing based on ACO technique and concluded that the execution time and energy consumption of the proposed technique is better than the three-threshold energy saving algorithm (TESA) technique that is commonly used in cloud load balancing.

2018 ◽  
Vol 7 (1) ◽  
pp. 16-19
Author(s):  
Anupama Gupta ◽  
Kulveer Kaur ◽  
Rajvir Kaur

Cloud computing is the architecture in which cloudlets are executed by the virtual machines. The most applicable virtual machines are selected on the basis of execution time and failure rate. Due to virtual machine overloading, the execution time and energy consumption is increased at steady rate. In this paper, BFO technique is applied in which weight of each virtual machine is calculated and the virtual machine which has the maximum weight is selected on which cloudlet will be migrated. The performance of proposed algorithm is tested by implementing it in CloudSim and analyzing it in terms of execution time, energy consumption.


Author(s):  
Malini Alagarsamy ◽  
Ajitha Sundarji ◽  
Aparna Arunachalapandi ◽  
Keerthanaa Kalyanasundaram

: Balancing the incoming data traffic across the servers is termed as Load balancing. In cloud computing, Load balancing means distributing loads across the cloud infrastructure. The performance of cloud computing depends on the different factors which include balancing the loads at the data center which increase the server utilization. Proper utilization of resources is termed as server utilization. The power consumption decreases with an increase in server utilization which in turn reduces the carbon footprint of the virtual machines at the data center. In this paper, the cost-aware ant colony optimization based load balancing model is proposed to minimize the execution time, response time and cost in a dynamic environment. This model enables to balance the load across the virtual machines in the data center and evaluate the overall performance with various load balancing models. As an average, the proposed model reduces carbon footprint by 45% than existing methods.


Author(s):  
Gurpreet Singh ◽  
Manish Mahajan ◽  
Rajni Mohana

BACKGROUND: Cloud computing is considered as an on-demand service resource with the applications towards data center on pay per user basis. For allocating the resources appropriately for the satisfaction of user needs, an effective and reliable resource allocation method is required. Because of the enhanced user demand, the allocation of resources has now considered as a complex and challenging task when a physical machine is overloaded, Virtual Machines share its load by utilizing the physical machine resources. Previous studies lack in energy consumption and time management while keeping the Virtual Machine at the different server in turned on state. AIM AND OBJECTIVE: The main aim of this research work is to propose an effective resource allocation scheme for allocating the Virtual Machine from an ad hoc sub server with Virtual Machines. EXECUTION MODEL: The execution of the research has been carried out into two sections, initially, the location of Virtual Machines and Physical Machine with the server has been taken place and subsequently, the cross-validation of allocation is addressed. For the sorting of Virtual Machines, Modified Best Fit Decreasing algorithm is used and Multi-Machine Job Scheduling is used while the placement process of jobs to an appropriate host. Artificial Neural Network as a classifier, has allocated jobs to the hosts. Measures, viz. Service Level Agreement violation and energy consumption are considered and fruitful results have been obtained with a 37.7 of reduction in energy consumption and 15% improvement in Service Level Agreement violation.


2014 ◽  
Vol 1046 ◽  
pp. 508-511
Author(s):  
Jian Rong Zhu ◽  
Yi Zhuang ◽  
Jing Li ◽  
Wei Zhu

How to reduce energy consumption while improving utility of datacenter is one of the key technologies in the cloud computing environment. In this paper, we use energy consumption and utility of data center as objective functions to set up a virtual machine scheduling model based on multi-objective optimization VMSA-MOP, and design a virtual machine scheduling algorithm based on NSGA-2 to solve the model. Experimental results show that compared with other virtual machine scheduling algorithms, our algorithm can obtain relatively optimal scheduling results.


2016 ◽  
Vol 5 (4) ◽  
pp. 165-191 ◽  
Author(s):  
Boominathan Perumal ◽  
Aramudhan M.

In cloud computing, the most important challenge is to enforce proper utilization of physical resources. To accomplish the mentioned challenge, the cloud providers need to take care of optimal mapping of virtual machines to a set of physical machines. In this paper, the authors address the mapping problem as a multi-objective virtual machine placement problem (VMP) and propose to apply multi-objective fuzzy ant colony optimization (F-ACO) technique for optimal placing of virtual machines in the physical servers. VMP-F-ACO is a combination of fuzzy logic and ACO, where we use fuzzy transition probability rule to simulate the behaviour of the ants and the authors apply the same for virtual machine placement problem. The results of fuzzy ACO techniques are compared with five variants of classical ACO, three bin packing heuristics and two evolutionary algorithms. The results show that the fuzzy ACO techniques are better than the other optimization and heuristic techniques considered.


2020 ◽  
Vol 10 (7) ◽  
pp. 2323
Author(s):  
T. Renugadevi ◽  
K. Geetha ◽  
K. Muthukumar ◽  
Zong Woo Geem

Drastic variations in high-performance computing workloads lead to the commencement of large number of datacenters. To revolutionize themselves as green datacenters, these data centers are assured to reduce their energy consumption without compromising the performance. The energy consumption of the processor is considered as an important metric for power reduction in servers as it accounts to 60% of the total power consumption. In this research work, a power-aware algorithm (PA) and an adaptive harmony search algorithm (AHSA) are proposed for the placement of reserved virtual machines in the datacenters to reduce the power consumption of servers. Modification of the standard harmony search algorithm is inevitable to suit this specific problem with varying global search space in each allocation interval. A task distribution algorithm is also proposed to distribute and balance the workload among the servers to evade over-utilization of servers which is unique of its kind against traditional virtual machine consolidation approaches that intend to restrain the number of powered on servers to the minimum as possible. Different policies for overload host selection and virtual machine selection are discussed for load balancing. The observations endorse that the AHSA outperforms, and yields better results towards the objective than, the PA algorithm and the existing counterparts.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mahfooz Alam ◽  
Mahak ◽  
Raza Abbas Haidri ◽  
Dileep Kumar Yadav

Purpose Cloud users can access services at anytime from anywhere in the world. On average, Google now processes more than 40,000 searches every second, which is approximately 3.5 billion searches per day. The diverse and vast amounts of data are generated with the development of next-generation information technologies such as cryptocurrency, internet of things and big data. To execute such applications, it is needed to design an efficient scheduling algorithm that considers the quality of service parameters like utilization, makespan and response time. Therefore, this paper aims to propose a novel Efficient Static Task Allocation (ESTA) algorithm, which optimizes average utilization. Design/methodology/approach Cloud computing provides resources such as virtual machine, network, storage, etc. over the internet. Cloud computing follows the pay-per-use billing model. To achieve efficient task allocation, scheduling algorithm problems should be interacted and tackled through efficient task distribution on the resources. The methodology of ESTA algorithm is based on minimum completion time approach. ESTA intelligently maps the batch of independent tasks (cloudlets) on heterogeneous virtual machines and optimizes their utilization in infrastructure as a service cloud computing. Findings To evaluate the performance of ESTA, the simulation study is compared with Min-Min, load balancing strategy with migration cost, Longest job in the fastest resource-shortest job in the fastest resource, sufferage, minimum completion time (MCT), minimum execution time and opportunistic load balancing on account of makespan, utilization and response time. Originality/value The simulation result reveals that the ESTA algorithm consistently superior performs under varying of batch independent of cloudlets and the number of virtual machines’ test conditions.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2724 ◽  
Author(s):  
Yuan ◽  
Sun

High-energy consumption in data centers has become a critical issue. The dynamic server consolidation has significant effects on saving energy of a data center. An effective way to consolidate virtual machines is to migrate virtual machines in real time so that some light load physical machines can be turned off or switched to low-power mode. The present challenge is to reduce the energy consumption of cloud data centers. In this paper, for the first time, a server consolidation algorithm based on the culture multiple-ant-colony algorithm was proposed for dynamic execution of virtual machine migration, thus reducing the energy consumption of cloud data centers. The server consolidation algorithm based on the culture multiple-ant-colony algorithm (CMACA) finds an approximate optimal solution through a specific target function. The simulation results show that the proposed algorithm not only reduces the energy consumption but also reduces the number of virtual machine migration.


Sign in / Sign up

Export Citation Format

Share Document