scholarly journals A new design of stepped antenna loaded metamaterial for RFID applications

2021 ◽  
Vol 10 (5) ◽  
pp. 2661-2666
Author(s):  
Badr Nasiri ◽  
Jamal Zbitou

Radio frequency identification is being overloaded with data information, making wideband band antennas very appealing. In this paper, we present a new design of dual band antenna for RFID reader applications operating at 2.45Gz and 5.8GHz with an average gain of 1.16dB at the lower frequency band and 3.2dB at the higher frequency band. The antenna is designed on an FR-4 substrate having a relative dielectric constant of 4.4 and loss tangent of 0.025. The proposed antenna is simulated, designed and, optimized using CST Microwave Studio and has a small size of 32 mm x 26 mm x 1.6 mm. The antenna consists of a steeped rectangular patch antenna using a partial ground plane loaded a modified split ring resonator. The metamaterial structure was designed and optimized to operate at 2.45GHz and its effective parameters was verified using the Nicolson-Ross Weir method. The performance of the proposed antenna is confirmed by another 3D electromagnetic solver HFSS.

Author(s):  
Abdelhadi Ennajih ◽  
Jamal Zbitou ◽  
Mohamed Latrach ◽  
Ahmed Errkik ◽  
Rachid Mandry

<span lang="EN-US">In this paper, we present a new dual band metamaterial printed antenna for radio frequency identification applications. The proposed antenna consists of two L-shaped slot in the radiating element for dual band operation and a complementary split ring resonator etched from the ground plane for size miniaturization. This antenna is designed and optimized by CST microwave studio on FR-4 substrate with thickness of 1.6 mm, dielectric constant of 4.4 and tangent loss of 0.025. A microstrip line with characteristic impedance of 50 ohms is used to feed this antenna. A prototype of the proposed antenna is fabricated to validate the simulation results. The measured and simulated results are in good agreement. </span>


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
M. E. de Cos ◽  
F. Las-Heras

A novel antenna/Artificial Magnetic Conductor (AMC) combination usable in dual-band Radio Frequency Identification (RFID) tags over metallic objects is presented. A compact and low thickness prototype is manufactured and characterized in terms of return loss and radiation properties in an anechoic chamber both alone and on a metallic plate. The performance exhibited by the presented antenna/AMC prototype is proper for RFID tags on both metallic and nonmetallic objects.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7953
Author(s):  
Sarosh Ahmad ◽  
Adnan Ghaffar ◽  
Niamat Hussain ◽  
Nam Kim

A simple dual-band patch antenna with paired L-shap slots for on- and off-body communications has been presented in this article. The proposed antenna resonates in the industrial, scientific, and medical (ISM) band at two different frequencies, at 2.45 GHz and 5.8 GHz. At the lower frequency band, the antenna’s radiation pattern is broadsided directional, whereas it is omni-directional at the higher frequency band. The efficiency and performance of the proposed antenna under the influence of the physical body are improved, and the specific absorption rate (SAR) value is significantly reduced by creating a full ground plane behind the substrate. The substrate’s material is FR-4, the thickness of which is 1.6 mm and it has a loss tangent of tanδ = 0.02. The overall size of the proposed design is 40 mm × 30 mm × 1.6 mm. Physical phantoms, such as skin, fat and muscle, are used to evaluate the impact of physical layers at 2.45 GHz and 5.8 GHz. The SAR values are assessed and found to be 0.19 W/kg and 1.18 W/kg at 2.45 GHz and 5.8 GHz, respectively, over 1 gram of mass tissue. The acquired results indicate that this antenna can be used for future on- and off-body communications and wireless services.


In this paper, a rectangular patch antenna with slits for dual band capabilities is presented. The suggested antenna works for two frequencies which are at 2.5 GHz and 5.1 GHz. The first operating frequency is in the band of 2.3 to 2.7GHz with -16.8dB reflection coefficient at 2.5GHz resonating frequency, whereas the second band is 4.6 to 5.5GHz with -29.2dB reflection coefficient at 5.1GHz resonating frequency. The simulation results exhibit that, the suggested antenna works for dual band frequency having impedance bandwidth of 482 and 844 MHz respectively. The gain is observed as 2.9 dBi and 4.2 dBi of respective bands. The first frequency band can be used for Industrial, Scientific and Medical(ISM) applications and second frequency band can be used for C-band applications.


2018 ◽  
Vol 7 (3) ◽  
pp. 40-45 ◽  
Author(s):  
S. Nelaturi ◽  
N.V.S.N. Sarma

In this paper, a novel compact microstrip patch antenna is proposed for Wi- Fi and WiMAX bands. To achieve miniaturization the dimensions of the square radiating patch are chosen with reference to the high frequency band (3.3 GHz). The dual band is achieved by loading a Complementary Split Ring Resonator (CSRR) into the radiating patch. The left handed nature of the CSRR is the cause for low frequency band (2.4 GHz). To improve the return loss bandwidth and axial ratio bandwidth at upper band the fractal concept is introduced along the edges of the square patch. Thus a low volume dual band antenna is simulated using HFSS. A comparison with measured data is also presented. The fabricated antenna is found to be occupying 25% less volume (with reference to 2.4 GHz) than existing antennas which is mainly due to the blending of the two recent concepts ‘metamaterials and fractals’.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Qun Luo ◽  
Huiping Tian ◽  
Zhitong Huang ◽  
Xudong Wang ◽  
Zheng Guo ◽  
...  

A unidirectional dual-band coplanar waveguide fed antenna (DB-CPWFA) loaded with a reflector is presented in this paper. The reflector is made of an electric ground plane, a dielectric substrate, and artificial magnetic conductor (AMC) which shows an effective dual operational bandwidth. Then, the closely spaced AMC reflector is employed under the DB-DPWFA for performance improvement including unidirectional radiation, low profile, gain enhancement, and higher front-to-back (F/B) ratio. The final antenna design exhibits an 8% and 13% impedance bandwidths for 2.45 GHz and 5.8 GHz frequency regions, respectively. The overall gain enhancement of about 4 dB is achieved. The F/B ratio is approximate to 20 dB with a 16 dB improvement. The measured results are inconsistent with the numerical values. The presented design is a suitable candidate for radio frequency identification (RFID) reader application.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Noelia Ortiz ◽  
Francisco Falcone ◽  
Mario Sorolla

A simple and successful dual band patch linear polarized rectangular antenna design is presented. The dual band antenna is designed etching a complementary rectangular split-ring resonator in the patch of a conventional rectangular patch antenna. Furthermore, a parametric study shows the influence of the location of the CSRR particle on the radiation characteristics of the dual band antenna. Going further, a miniaturization of the conventional rectangular patch antenna and an enhancement of the complementary split-ring resonator resonance gain versus the location of the CSRR on the patch are achieved. The dual band antenna design has been made feasible due to the quasistatic resonance property of the complementary split-ring resonators. The simulated results are compared with measured data and good agreement is reported.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
H. M. El Misilmani ◽  
M. Al-Husseini ◽  
K. Y. Kabalan ◽  
A. El-Hajj

This paper presents multiband circularly polarized (CP) antennas for radio frequency identification (RFID). A coax-fed and a microstrip-line-fed antennas having optimized cross-slots in their patches are first designed for dual-band CP operation. The microstrip-line-fed design is then modified, by incorporating a U-shaped slot in its partial ground plane, to achieve additional operation band with a CP characteristic. Simulation and measured results of the presented designs are reported. The measured results are in accordance with the computed ones. The compact size and CP property make these designs suitable for RFID applications.


2021 ◽  
Vol 11 (5) ◽  
pp. 2007
Author(s):  
Yuqing Dou ◽  
Guiting Dong ◽  
Jiafu Lin ◽  
Qibo Cai ◽  
Gui Liu

This paper presents a low-profile dual-band antenna with directional radiation characteristics for wireless local area network (WLAN) applications. The proposed directional antenna is composed of a coupling microstrip line, two F-shaped strips, two rectangular strips, and a defected ground plane. The measured impedance bandwidth of the proposed antenna is 180 MHz (2.33–2.51 GHz) and 830 MHz (5.09–5.92 GHz), which can cover Institute of Electrical and Electronic Engineers (IEEE) 802.11 a/b/g frequency bands. The dual-band antenna exhibits a desirable directional radiation patterns in the vertical and horizontal planes with the peak gain of 6.55 dBi in the lower frequency band and 8.1 dBi in the higher frequency band. The measured antenna efficiency is 70% at 2.4 GHz and 84.5% at 5.5 GHz. The proposed dual-band WLAN station antenna is designed on a FR4 substrate with overall dimensions of 69 mm × 50 mm × 1.6 mm.


Sign in / Sign up

Export Citation Format

Share Document