scholarly journals Computer model for tsunami vulnerability using sentinel 2A and SRTM images optimized by machine learning

2021 ◽  
Vol 10 (5) ◽  
pp. 2821-2835
Author(s):  
Sri Yulianto Joko Prasetyo ◽  
Bistok Hasiholan Simanjuntak ◽  
Kristoko Dwi Hartomo ◽  
Wiwin Sulistyo

This study aims to develop a software framework for modeling of tsunami vulnerability using DEM and Sentinel 2 images. The stages of study, are: 1) extraction Sentinel 2 images using algorithms NDVI, NDBI, NDWI, MSAVI, and MNDWI; 2) prediction vegetation indices using machine learning algorithms. 3) accuracy testing using the MSE, ME, RMSE, MAE, MPE, and MAPE; 4) spatial prediction using Kriging function and 5) modeling tsunami vulnerability indicators. The results show that in 2021 the area was dominated by vegetation density between (-0.1-0.3) with moderate to high vulnerability and risk of land use tsunami as a result of the decreasing of vegetation. The prediction results for 2021 show a low canopy density of vegetation and a high degree of land surface slope. Based on the prediction results in 2021, the study area mostly shows the existence of built-up lands with a high tsunami vulnerability risk (more than 0.1). Vegetation population had decreased to 67% from the original areas in 2017 with an area of 135 km2. Forest vegetation had decreased by 45% from 116 km2 in 2017. Land use for fisheries had increased to the area of 86 km2 from 2017 with an area of 24 km2.

2021 ◽  
Vol 13 (24) ◽  
pp. 13758
Author(s):  
Kotapati Narayana Loukika ◽  
Venkata Reddy Keesara ◽  
Venkataramana Sridhar

The growing human population accelerates alterations in land use and land cover (LULC) over time, putting tremendous strain on natural resources. Monitoring and assessing LULC change over large areas is critical in a variety of fields, including natural resource management and climate change research. LULC change has emerged as a critical concern for policymakers and environmentalists. As the need for the reliable estimation of LULC maps from remote sensing data grows, it is critical to comprehend how different machine learning classifiers perform. The primary goal of the present study was to classify LULC on the Google Earth Engine platform using three different machine learning algorithms—namely, support vector machine (SVM), random forest (RF), and classification and regression trees (CART)—and to compare their performance using accuracy assessments. The LULC of the study area was classified via supervised classification. For improved classification accuracy, NDVI (normalized difference vegetation index) and NDWI (normalized difference water index) indices were also derived and included. For the years 2016, 2018, and 2020, multitemporal Sentinel-2 and Landsat-8 data with spatial resolutions of 10 m and 30 m were used for the LULC classification. ‘Water bodies’, ‘forest’, ‘barren land’, ‘vegetation’, and ‘built-up’ were the major land use classes. The average overall accuracy of SVM, RF, and CART classifiers for Landsat-8 images was 90.88%, 94.85%, and 82.88%, respectively, and 93.8%, 95.8%, and 86.4% for Sentinel-2 images. These results indicate that RF classifiers outperform both SVM and CART classifiers in terms of accuracy.


2021 ◽  
Vol 13 (21) ◽  
pp. 4256
Author(s):  
Julián Garzón ◽  
Iñigo Molina ◽  
Jesús Velasco ◽  
Andrés Calabia

The Surface Urban Heat Islands (SUHI) phenomenon has adverse environmental consequences on human activities, biophysical and ecological systems. In this study, Land Surface Temperature (LST) from Landsat and Sentinel-2 satellites is used to investigate the contribution of potential factors that generate the SUHI phenomenon. We employ principal component analysis (PCA) and multiple linear regression (MLR) techniques to model the main temporal and spatial SUHI patterns of Cartago, Colombia, for the period 2001–2020. We test and evaluate the performance of three different emissivity models to retrieve LST. The fractional vegetation cover model using Sentinel-2 data provides the best results with R2 = 0.78, while the ASTER Global Emissivity Dataset v3 and the land surface emissivity model provide R2 = 0.27 and R2 = 0.26, respectively. Our SUHI model reveals that the factors with the highest impact are the Normalized Difference Water Index (NDWI) and the Normalized Difference Build-up Index (NDBI). Furthermore, we incorporate a weighted Naïve Bayes Machine Learning (NBML) algorithm to identify areas prone to extreme temperatures that can be used to define and apply normative actions to mitigate the negative consequences of SUHI. Our NBML approach demonstrates the suitability of the new SUHI model with uncertainty within 95%, against the 88% given by the Support Vector Machine (SVM) approach.


2020 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Negar Tavasoli ◽  
Hossein Arefi

Assessment of forest above ground biomass (AGB) is critical for managing forest and understanding the role of forest as source of carbon fluxes. Recently, satellite remote sensing products offer the chance to map forest biomass and carbon stock. The present study focuses on comparing the potential use of combination of ALOSPALSAR and Sentinel-1 SAR data, with Sentinel-2 optical data to estimate above ground biomass and carbon stock using Genetic-Random forest machine learning (GA-RF) algorithm. Polarimetric decompositions, texture characteristics and backscatter coefficients of ALOSPALSAR and Sentinel-1, and vegetation indices, tasseled cap, texture parameters and principal component analysis (PCA) of Sentinel-2 based on measured AGB samples were used to estimate biomass. The overall coefficient (R2) of AGB modelling using combination of ALOSPALSAR and Sentinel-1 data, and Sentinel-2 data were respectively 0.70 and 0.62. The result showed that Combining ALOSPALSAR and Sentinel-1 data to predict AGB by using GA-RF model performed better than Sentinel-2 data.


2021 ◽  
Vol 13 (9) ◽  
pp. 4728
Author(s):  
Zinhle Mashaba-Munghemezulu ◽  
George Johannes Chirima ◽  
Cilence Munghemezulu

Rural communities rely on smallholder maize farms for subsistence agriculture, the main driver of local economic activity and food security. However, their planted area estimates are unknown in most developing countries. This study explores the use of Sentinel-1 and Sentinel-2 data to map smallholder maize farms. The random forest (RF), support vector (SVM) machine learning algorithms and model stacking (ST) were applied. Results show that the classification of combined Sentinel-1 and Sentinel-2 data improved the RF, SVM and ST algorithms by 24.2%, 8.7%, and 9.1%, respectively, compared to the classification of Sentinel-1 data individually. Similarities in the estimated areas (7001.35 ± 1.2 ha for RF, 7926.03 ± 0.7 ha for SVM and 7099.59 ± 0.8 ha for ST) show that machine learning can estimate smallholder maize areas with high accuracies. The study concludes that the single-date Sentinel-1 data were insufficient to map smallholder maize farms. However, single-date Sentinel-1 combined with Sentinel-2 data were sufficient in mapping smallholder farms. These results can be used to support the generation and validation of national crop statistics, thus contributing to food security.


Sign in / Sign up

Export Citation Format

Share Document