scholarly journals A Remote Sensing Approach for Surface Urban Heat Island Modeling in a Tropical Colombian City Using Regression Analysis and Machine Learning Algorithms

2021 ◽  
Vol 13 (21) ◽  
pp. 4256
Author(s):  
Julián Garzón ◽  
Iñigo Molina ◽  
Jesús Velasco ◽  
Andrés Calabia

The Surface Urban Heat Islands (SUHI) phenomenon has adverse environmental consequences on human activities, biophysical and ecological systems. In this study, Land Surface Temperature (LST) from Landsat and Sentinel-2 satellites is used to investigate the contribution of potential factors that generate the SUHI phenomenon. We employ principal component analysis (PCA) and multiple linear regression (MLR) techniques to model the main temporal and spatial SUHI patterns of Cartago, Colombia, for the period 2001–2020. We test and evaluate the performance of three different emissivity models to retrieve LST. The fractional vegetation cover model using Sentinel-2 data provides the best results with R2 = 0.78, while the ASTER Global Emissivity Dataset v3 and the land surface emissivity model provide R2 = 0.27 and R2 = 0.26, respectively. Our SUHI model reveals that the factors with the highest impact are the Normalized Difference Water Index (NDWI) and the Normalized Difference Build-up Index (NDBI). Furthermore, we incorporate a weighted Naïve Bayes Machine Learning (NBML) algorithm to identify areas prone to extreme temperatures that can be used to define and apply normative actions to mitigate the negative consequences of SUHI. Our NBML approach demonstrates the suitability of the new SUHI model with uncertainty within 95%, against the 88% given by the Support Vector Machine (SVM) approach.

2021 ◽  
Vol 13 (9) ◽  
pp. 4728
Author(s):  
Zinhle Mashaba-Munghemezulu ◽  
George Johannes Chirima ◽  
Cilence Munghemezulu

Rural communities rely on smallholder maize farms for subsistence agriculture, the main driver of local economic activity and food security. However, their planted area estimates are unknown in most developing countries. This study explores the use of Sentinel-1 and Sentinel-2 data to map smallholder maize farms. The random forest (RF), support vector (SVM) machine learning algorithms and model stacking (ST) were applied. Results show that the classification of combined Sentinel-1 and Sentinel-2 data improved the RF, SVM and ST algorithms by 24.2%, 8.7%, and 9.1%, respectively, compared to the classification of Sentinel-1 data individually. Similarities in the estimated areas (7001.35 ± 1.2 ha for RF, 7926.03 ± 0.7 ha for SVM and 7099.59 ± 0.8 ha for ST) show that machine learning can estimate smallholder maize areas with high accuracies. The study concludes that the single-date Sentinel-1 data were insufficient to map smallholder maize farms. However, single-date Sentinel-1 combined with Sentinel-2 data were sufficient in mapping smallholder farms. These results can be used to support the generation and validation of national crop statistics, thus contributing to food security.


2020 ◽  
Vol 9 (9) ◽  
pp. 507
Author(s):  
Sanjiwana Arjasakusuma ◽  
Sandiaga Swahyu Kusuma ◽  
Stuart Phinn

Machine learning has been employed for various mapping and modeling tasks using input variables from different sources of remote sensing data. For feature selection involving high- spatial and spectral dimensionality data, various methods have been developed and incorporated into the machine learning framework to ensure an efficient and optimal computational process. This research aims to assess the accuracy of various feature selection and machine learning methods for estimating forest height using AISA (airborne imaging spectrometer for applications) hyperspectral bands (479 bands) and airborne light detection and ranging (lidar) height metrics (36 metrics), alone and combined. Feature selection and dimensionality reduction using Boruta (BO), principal component analysis (PCA), simulated annealing (SA), and genetic algorithm (GA) in combination with machine learning algorithms such as multivariate adaptive regression spline (MARS), extra trees (ET), support vector regression (SVR) with radial basis function, and extreme gradient boosting (XGB) with trees (XGbtree and XGBdart) and linear (XGBlin) classifiers were evaluated. The results demonstrated that the combinations of BO-XGBdart and BO-SVR delivered the best model performance for estimating tropical forest height by combining lidar and hyperspectral data, with R2 = 0.53 and RMSE = 1.7 m (18.4% of nRMSE and 0.046 m of bias) for BO-XGBdart and R2 = 0.51 and RMSE = 1.8 m (15.8% of nRMSE and −0.244 m of bias) for BO-SVR. Our study also demonstrated the effectiveness of BO for variables selection; it could reduce 95% of the data to select the 29 most important variables from the initial 516 variables from lidar metrics and hyperspectral data.


2020 ◽  
Vol 12 (24) ◽  
pp. 4086
Author(s):  
Danielle Elis Garcia Furuya ◽  
João Alex Floriano Aguiar ◽  
Nayara V. Estrabis ◽  
Mayara Maezano Faita Pinheiro ◽  
Michelle Taís Garcia Furuya ◽  
...  

Riparian zones consist of important environmental regions, specifically to maintain the quality of water resources. Accurately mapping forest vegetation in riparian zones is an important issue, since it may provide information about numerous surface processes that occur in these areas. Recently, machine learning algorithms have gained attention as an innovative approach to extract information from remote sensing imagery, including to support the mapping task of vegetation areas. Nonetheless, studies related to machine learning application for forest vegetation mapping in the riparian zones exclusively is still limited. Therefore, this paper presents a framework for forest vegetation mapping in riparian zones based on machine learning models using orbital multispectral images. A total of 14 Sentinel-2 images registered throughout the year, covering a large riparian zone of a portion of a wide river in the Pontal do Paranapanema region, São Paulo state, Brazil, was adopted as the dataset. This area is mainly composed of the Atlantic Biome vegetation, and it is near to the last primary fragment of its biome, being an important region from the environmental planning point of view. We compared the performance of multiple machine learning algorithms like decision tree (DT), random forest (RF), support vector machine (SVM), and normal Bayes (NB). We evaluated different dates and locations with all models. Our results demonstrated that the DT learner has, overall, the highest accuracy in this task. The DT algorithm also showed high accuracy when applied on different dates and in the riparian zone of another river. We conclude that the proposed approach is appropriated to accurately map forest vegetation in riparian zones, including temporal context.


2019 ◽  
Vol 8 (2) ◽  
pp. 3697-3705 ◽  

Forest fires have become one of the most frequently occurring disasters in recent years. The effects of forest fires have a lasting impact on the environment as it lead to deforestation and global warming, which is also one of its major cause of occurrence. Forest fires are dealt by collecting the satellite images of forest and if there is any emergency caused by the fires then the authorities are notified to mitigate its effects. By the time the authorities get to know about it, the fires would have already caused a lot of damage. Data mining and machine learning techniques can provide an efficient prevention approach where data associated with forests can be used for predicting the eventuality of forest fires. This paper uses the dataset present in the UCI machine learning repository which consists of physical factors and climatic conditions of the Montesinho park situated in Portugal. Various algorithms like Logistic regression, Support Vector Machine, Random forest, K-Nearest neighbors in addition to Bagging and Boosting predictors are used, both with and without Principal Component Analysis (PCA). Among the models in which PCA was applied, Logistic Regression gave the highest F-1 score of 68.26 and among the models where PCA was absent, Gradient boosting gave the highest score of 68.36.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 94
Author(s):  
Alvaro Murguia-Cozar ◽  
Antonia Macedo-Cruz ◽  
Demetrio Salvador Fernandez-Reynoso ◽  
Jorge Arturo Salgado Transito

The scarcity of water for agricultural use is a serious problem that has increased due to intense droughts, poor management, and deficiencies in the distribution and application of the resource. The monitoring of crops through satellite image processing and the application of machine learning algorithms are technological strategies with which developed countries tend to implement better public policies regarding the efficient use of water. The purpose of this research was to determine the main indicators and characteristics that allow us to discriminate the phenological stages of maize crops (Zea mays L.) in Sentinel 2 satellite images through supervised classification models. The training data were obtained by monitoring cultivated plots during an agricultural cycle. Indicators and characteristics were extracted from 41 Sentinel 2 images acquired during the monitoring dates. With these images, indicators of texture, vegetation, and colour were calculated to train three supervised classifiers: linear discriminant (LD), support vector machine (SVM), and k-nearest neighbours (kNN) models. It was found that 45 of the 86 characteristics extracted contributed to maximizing the accuracy by stage of development and the overall accuracy of the trained classification models. The characteristics of the Moran’s I local indicator of spatial association (LISA) improved the accuracy of the classifiers when applied to the L*a*b* colour model and to the near-infrared (NIR) band. The local binary pattern (LBP) increased the accuracy of the classification when applied to the red, green, blue (RGB) and NIR bands. The colour ratios, leaf area index (LAI), RGB colour model, L*a*b* colour space, LISA, and LBP extracted the most important intrinsic characteristics of maize crops with regard to classifying the phenological stages of the maize cultivation. The quadratic SVM model was the best classifier of maize crop phenology, with an overall accuracy of 82.3%.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2769 ◽  
Author(s):  
Tri Dev Acharya ◽  
Anoj Subedi ◽  
Dong Ha Lee

With over 6000 rivers and 5358 lakes, surface water is one of the most important resources in Nepal. However, the quantity and quality of Nepal’s rivers and lakes are decreasing due to human activities and climate change. Despite the advancement of remote sensing technology and the availability of open access data and tools, the monitoring and surface water extraction works has not been carried out in Nepal. Single or multiple water index methods have been applied in the extraction of surface water with satisfactory results. Extending our previous study, the authors evaluated six different machine learning algorithms: Naive Bayes (NB), recursive partitioning and regression trees (RPART), neural networks (NNET), support vector machines (SVM), random forest (RF), and gradient boosted machines (GBM) to extract surface water in Nepal. With three secondary bands, slope, NDVI and NDWI, the algorithms were evaluated for performance with the addition of extra information. As a result, all the applied machine learning algorithms, except NB and RPART, showed good performance. RF showed overall accuracy (OA) and kappa coefficient (Kappa) of 1 for the all the multiband data with the reference dataset, followed by GBM, NNET, and SVM in metrics. The performances were better in the hilly regions and flat lands, but not well in the Himalayas with ice, snow and shadows, and the addition of slope and NDWI showed improvement in the results. Adding single secondary bands is better than adding multiple in most algorithms except NNET. From current and previous studies, it is recommended to separate any study area with and without snow or low and high elevation, then apply machine learning algorithms in original Landsat data or with the addition of slopes or NDWI for better performance.


2018 ◽  
Vol 10 (9) ◽  
pp. 1419 ◽  
Author(s):  
Mathias Wessel ◽  
Melanie Brandmeier ◽  
Dirk Tiede

We use freely available Sentinel-2 data and forest inventory data to evaluate the potential of different machine-learning approaches to classify tree species in two forest regions in Bavaria, Germany. Atmospheric correction was applied to the level 1C data, resulting in true surface reflectance or bottom of atmosphere (BOA) output. We developed a semiautomatic workflow for the classification of deciduous (mainly spruce trees), beech and oak trees by evaluating different classification algorithms (object- and pixel-based) in an architecture optimized for distributed processing. A hierarchical approach was used to evaluate different band combinations and algorithms (Support Vector Machines (SVM) and Random Forest (RF)) for the separation of broad-leaved vs. coniferous trees. The Ebersberger forest was the main project region and the Freisinger forest was used in a transferability study. Accuracy assessment and training of the algorithms was based on inventory data, validation was conducted using an independent dataset. A confusion matrix, with User´s and Producer´s Accuracies, as well as Overall Accuracies, was created for all analyses. In total, we tested 16 different classification setups for coniferous vs. broad-leaved trees, achieving the best performance of 97% for an object-based multitemporal SVM approach using only band 8 from three scenes (May, August and September). For the separation of beech and oak trees we evaluated 54 different setups, the best result achieved an accuracy of 91% for an object-based, SVM, multitemporal approach using bands 8, 2 and 3 of the May scene for segmentation and all principal components of the August scene for classification. The transferability of the model was tested for the Freisinger forest and showed similar results. This project points out that Sentinel-2 had only marginally worse results than comparable commercial high-resolution satellite sensors and is well-suited for forest analysis on a tree-stand level.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 713 ◽  
Author(s):  
Aliva Nanda ◽  
Sumit Sen ◽  
Awshesh Nath Sharma ◽  
K. P. Sudheer

Soil temperature plays an important role in understanding hydrological, ecological, meteorological, and land surface processes. However, studies related to soil temperature variability are very scarce in various parts of the world, especially in the Indian Himalayan Region (IHR). Thus, this study aims to analyze the spatio-temporal variability of soil temperature in two nested hillslopes of the lesser Himalaya and to check the efficiency of different machine learning algorithms to estimate soil temperature in the data-scarce region. To accomplish this goal, grassed (GA) and agro-forested (AgF) hillslopes were instrumented with Odyssey water level and decagon soil moisture and temperature sensors. The average soil temperature of the south aspect hillslope (i.e., GA hillslope) was higher than the north aspect hillslope (i.e., AgF hillslope). After analyzing 40 rainfall events from both hillslopes, it was observed that a rainfall duration of greater than 7.5 h or an event with an average rainfall intensity greater than 7.5 mm/h results in more than 2 °C soil temperature drop. Further, a drop in soil temperature less than 1 °C was also observed during very high-intensity rainfall which has a very short event duration. During the rainy season, the soil temperature drop of the GA hillslope is higher than the AgF hillslope as the former one infiltrates more water. This observation indicates the significant correlation between soil moisture rise and soil temperature drop. The potential of four machine learning algorithms was also explored in predicting soil temperature under data-scarce conditions. Among the four machine learning algorithms, an extreme gradient boosting system (XGBoost) performed better for both the hillslopes followed by random forests (RF), multilayer perceptron (MLP), and support vector machine (SVMs). The addition of rainfall to meteorological and meteorological + soil moisture datasets did not improve the models considerably. However, the addition of soil moisture to meteorological parameters improved the model significantly.


Author(s):  
Zhenxing Wu ◽  
Minfeng Zhu ◽  
Yu Kang ◽  
Elaine Lai-Han Leung ◽  
Tailong Lei ◽  
...  

Abstract Although a wide variety of machine learning (ML) algorithms have been utilized to learn quantitative structure–activity relationships (QSARs), there is no agreed single best algorithm for QSAR learning. Therefore, a comprehensive understanding of the performance characteristics of popular ML algorithms used in QSAR learning is highly desirable. In this study, five linear algorithms [linear function Gaussian process regression (linear-GPR), linear function support vector machine (linear-SVM), partial least squares regression (PLSR), multiple linear regression (MLR) and principal component regression (PCR)], three analogizers [radial basis function support vector machine (rbf-SVM), K-nearest neighbor (KNN) and radial basis function Gaussian process regression (rbf-GPR)], six symbolists [extreme gradient boosting (XGBoost), Cubist, random forest (RF), multiple adaptive regression splines (MARS), gradient boosting machine (GBM), and classification and regression tree (CART)] and two connectionists [principal component analysis artificial neural network (pca-ANN) and deep neural network (DNN)] were employed to learn the regression-based QSAR models for 14 public data sets comprising nine physicochemical properties and five toxicity endpoints. The results show that rbf-SVM, rbf-GPR, XGBoost and DNN generally illustrate better performances than the other algorithms. The overall performances of different algorithms can be ranked from the best to the worst as follows: rbf-SVM > XGBoost > rbf-GPR > Cubist > GBM > DNN > RF > pca-ANN > MARS > linear-GPR ≈ KNN > linear-SVM ≈ PLSR > CART ≈ PCR ≈ MLR. In terms of prediction accuracy and computational efficiency, SVM and XGBoost are recommended to the regression learning for small data sets, and XGBoost is an excellent choice for large data sets. We then investigated the performances of the ensemble models by integrating the predictions of multiple ML algorithms. The results illustrate that the ensembles of two or three algorithms in different categories can indeed improve the predictions of the best individual ML algorithms.


2019 ◽  
Vol 11 (23) ◽  
pp. 2847 ◽  
Author(s):  
Yezhe Wang ◽  
Bo Jiang ◽  
Shunlin Liang ◽  
Dongdong Wang ◽  
Tao He ◽  
...  

Surface shortwave net radiation (SSNR) flux is essential for the determination of the radiation energy balance between the atmosphere and the Earth’s surface. The satellite-derived intermediate SSNR data are strongly needed to bridge the gap between existing coarse-resolution SSNR products and point-based measurements. In this study, four different machine learning (ML) algorithms were tested to estimate the SSNR from the Landsat Thematic Mapper (TM)/ Enhanced Thematic Mapper Plus (ETM+) top-of-atmosphere (TOA) reflectance and other ancillary information (i.e., clearness index, water vapor) at instantaneous and daily scales under all sky conditions. The four ML algorithms include the multivariate adaptive regression splines (MARS), backpropagation neural network (BPNN), support vector regression (SVR), and gradient boosting regression tree (GBRT). Collected in-situ measurements were used to train the global model (using all data) and the conditional models (in which all data were divided into subsets and the models were fitted separately). The validation results indicated that the GBRT-based global model (GGM) performs the best at both the instantaneous and daily scales. For example, the GGM based on the TM data yielded a coefficient of determination value (R2) of 0.88 and 0.94, an average root mean square error (RMSE) of 73.23 W∙m-2 (15.09%) and 18.76 W·m-2 (11.2%), and a bias of 0.64 W·m-2 and –1.74 W·m-2 for instantaneous and daily SSNR, respectively. Compared to the Global LAnd Surface Satellite (GLASS) daily SSNR product, the daily TM-SSNR showed a very similar spatial distribution but with more details. Further analysis also demonstrated the robustness of the GGM for various land cover types, elevation, general atmospheric conditions, and seasons


Sign in / Sign up

Export Citation Format

Share Document