scholarly journals On detecting and identifying faulty internet of things devices and outages

2021 ◽  
Vol 10 (6) ◽  
pp. 3127-3136
Author(s):  
Feng Wang ◽  
Eduard Babulak ◽  
Yongning Tang

As internet of things (IoT) devices play an integral role in our everyday life, it is critical to monitor the health of the IoT devices. However, fault detection in IoT is much more challenging compared with that in traditional wired networks. Traditional observing and polling are not appropriate for detecting faults in resource-constrained IoT devices. Because of the dynamic feature of IoT devices, these detection methods are inadequate for IoT fault detection. In this paper, we propose two methods that can monitor the health status of IoT devices through monitoring the network traffic of these devices. Based on the collected traffic or flow entropy, these methods can determine the health status of IoT devices by comparing captured traffic behavior with normal traffic patterns. Our measurements show that the two methods can effectively detect and identify malfunctioned or defective IoT devices.

2021 ◽  
Vol 20 (5s) ◽  
pp. 1-21
Author(s):  
Gyeongmin Lee ◽  
Bongjun Kim ◽  
Seungbin Song ◽  
Changsu Kim ◽  
Jong Kim ◽  
...  

In the Internet of Things (IoT) environment, detecting a faulty device is crucial to guarantee the reliable execution of IoT services. To detect a faulty device, existing schemes trace a series of events among IoT devices within a certain time window, extract correlations among them, and find a faulty device that violates the correlations. However, if a few users share the same IoT environment, since their concurrent activities make non-correlated devices react together in the same time window, the existing schemes fail to detect a faulty device without differentiating the concurrent activities. To correctly detect a faulty device in the multiple concurrent activities, this work proposes a new precise correlation extraction scheme, called PCoExtractor. Instead of using a time window, PCoExtractor continuously traces the events, removes unrelated device statuses that inconsistently react for the same activity, and constructs fine-grained correlations. Moreover, to increase the detection precision, this work newly defines a fine-grained correlation representation that reflects not only sensor values and functionalities of actuators but also their transitions and program states such as contexts. Compared to existing schemes, PCoExtractor detects and identifies 40.06% more faults for 4 IoT services with concurrent activities of 12 users while reducing 80.3% of detection and identification times.


2021 ◽  
pp. 68-84
Author(s):  
Mahmoud A. Salam ◽  

Botnet attacks involving Internet-of-Things (IoT) devices have skyrocketed in recent years due to the proliferation of internet IoT devices that can be readily infiltrated. The botnet is a common threat, exploiting the absence of basic IoT security technologies and can perform several DDoS attacks. Existing IoT botnet detection methods still have issues, such as relying on labeled data, not being validated with newer botnets, and using very complex machine learning algorithms, making the development of new methods to detect compromised IoT devices urgent to reduce the negative implications of these IoT botnets. Due to the vast amount of normal data accessible, anomaly detection algorithms seem to promise for identifying botnet attacks on the Internet of Things (IoT). For anomaly detection, the One-Class Support vector machine is a strong method (ONE-SVM). Many aspects influence the classification outcomes of the ONE-SVM technique, like that of the subset of features utilized for training the ONE-SVM model, hyperparameters of the kernel. An evolutionary IoT botnet detection algorithm is described in this paper. Particle Swarm Optimization technique (PSO) is used to tune the hyperparameters of the ONE-SVM to detect IoT botnet assaults launched from hacked IoT devices. A new version of a real benchmark dataset is used to evaluate the proposed method's performance using traditional anomaly detection evaluation measures. This technique exceeds all existing algorithms in terms of false positive, true positive and rates, and G-mean for all IoT device categories, according to testing results. It also achieves the shortest detection time despite lowering the number of picked features by a significant amount.


Author(s):  
B. Joyce Beula Rani ◽  
L. Sumathi

Usage of IoT products have been rapidly increased in past few years. The large number of insecure Internet of Things (IoT) devices with low computation power makes them an easy and attractive target for attackers seeking to compromise these devices and use them to create large-scale attacks. Detecting those attacks is a time consuming task and it needs to be identified shortly since it keeps on spreading. Various detection methods are used for detecting these attacks but attack mechanism keeps on evolving so a new detection approach must be introduced to detect their presence and thus blocking their spreading. In this paper a deep learning approach called GAN – Generative Adversarial Network can be used to detect this outlier and achieve 85% accuracy.


2021 ◽  
Vol 11 (12) ◽  
pp. 5713
Author(s):  
Majda Wazzan ◽  
Daniyal Algazzawi ◽  
Omaima Bamasaq ◽  
Aiiad Albeshri ◽  
Li Cheng

Internet of Things (IoT) is promising technology that brings tremendous benefits if used optimally. At the same time, it has resulted in an increase in cybersecurity risks due to the lack of security for IoT devices. IoT botnets, for instance, have become a critical threat; however, systematic and comprehensive studies analyzing the importance of botnet detection methods are limited in the IoT environment. Thus, this study aimed to identify, assess and provide a thoroughly review of experimental works on the research relevant to the detection of IoT botnets. To accomplish this goal, a systematic literature review (SLR), an effective method, was applied for gathering and critically reviewing research papers. This work employed three research questions on the detection methods used to detect IoT botnets, the botnet phases and the different malicious activity scenarios. The authors analyzed the nominated research and the key methods related to them. The detection methods have been classified based on the techniques used, and the authors investigated the botnet phases during which detection is accomplished. This research procedure was used to create a source of foundational knowledge of IoT botnet detection methods. As a result of this study, the authors analyzed the current research gaps and suggest future research directions.


2017 ◽  
Author(s):  
JOSEPH YIU

The increasing need for security in microcontrollers Security has long been a significant challenge in microcontroller applications(MCUs). Traditionally, many microcontroller systems did not have strong security measures against remote attacks as most of them are not connected to the Internet, and many microcontrollers are deemed to be cheap and simple. With the growth of IoT (Internet of Things), security in low cost microcontrollers moved toward the spotlight and the security requirements of these IoT devices are now just as critical as high-end systems due to:


Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 61-63 ◽  
Author(s):  
Akihiro Fujii

The Internet of Things (IoT) is a term that describes a system of computing devices, digital machines, objects, animals or people that are interrelated. Each of the interrelated 'things' are given a unique identifier and the ability to transfer data over a network that does not require human-to-human or human-to-computer interaction. Examples of IoT in practice include a human with a heart monitor implant, an animal with a biochip transponder (an electronic device inserted under the skin that gives the animal a unique identification number) and a car that has built-in sensors which can alert the driver about any problems, such as when the type pressure is low. The concept of a network of devices was established as early as 1982, although the term 'Internet of Things' was almost certainly first coined by Kevin Ashton in 1999. Since then, IoT devices have become ubiquitous, certainly in some parts of the world. Although there have been significant developments in the technology associated with IoT, the concept is far from being fully realised. Indeed, the potential for the reach of IoT extends to areas which some would find surprising. Researchers at the Faculty of Science and Engineering, Hosei University in Japan, are exploring using IoT in the agricultural sector, with some specific work on the production of melons. For the advancement of IoT in agriculture, difficult and important issues are implementation of subtle activities into computers procedure. The researchers challenges are going on.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Scott Monteith ◽  
Tasha Glenn ◽  
John Geddes ◽  
Emanuel Severus ◽  
Peter C. Whybrow ◽  
...  

Abstract Background Internet of Things (IoT) devices for remote monitoring, diagnosis, and treatment are widely viewed as an important future direction for medicine, including for bipolar disorder and other mental illness. The number of smart, connected devices is expanding rapidly. IoT devices are being introduced in all aspects of everyday life, including devices in the home and wearables on the body. IoT devices are increasingly used in psychiatric research, and in the future may help to detect emotional reactions, mood states, stress, and cognitive abilities. This narrative review discusses some of the important fundamental issues related to the rapid growth of IoT devices. Main body Articles were searched between December 2019 and February 2020. Topics discussed include background on the growth of IoT, the security, safety and privacy issues related to IoT devices, and the new roles in the IoT economy for manufacturers, patients, and healthcare organizations. Conclusions The use of IoT devices will increase throughout psychiatry. The scale, complexity and passive nature of data collection with IoT devices presents unique challenges related to security, privacy and personal safety. While the IoT offers many potential benefits, there are risks associated with IoT devices, and from the connectivity between patients, healthcare providers, and device makers. Security, privacy and personal safety issues related to IoT devices are changing the roles of manufacturers, patients, physicians and healthcare IT organizations. Effective and safe use of IoT devices in psychiatry requires an understanding of these changes.


Author(s):  
Chen Qi ◽  
Shibo Shen ◽  
Rongpeng Li ◽  
Zhifeng Zhao ◽  
Qing Liu ◽  
...  

AbstractNowadays, deep neural networks (DNNs) have been rapidly deployed to realize a number of functionalities like sensing, imaging, classification, recognition, etc. However, the computational-intensive requirement of DNNs makes it difficult to be applicable for resource-limited Internet of Things (IoT) devices. In this paper, we propose a novel pruning-based paradigm that aims to reduce the computational cost of DNNs, by uncovering a more compact structure and learning the effective weights therein, on the basis of not compromising the expressive capability of DNNs. In particular, our algorithm can achieve efficient end-to-end training that transfers a redundant neural network to a compact one with a specifically targeted compression rate directly. We comprehensively evaluate our approach on various representative benchmark datasets and compared with typical advanced convolutional neural network (CNN) architectures. The experimental results verify the superior performance and robust effectiveness of our scheme. For example, when pruning VGG on CIFAR-10, our proposed scheme is able to significantly reduce its FLOPs (floating-point operations) and number of parameters with a proportion of 76.2% and 94.1%, respectively, while still maintaining a satisfactory accuracy. To sum up, our scheme could facilitate the integration of DNNs into the common machine-learning-based IoT framework and establish distributed training of neural networks in both cloud and edge.


Sign in / Sign up

Export Citation Format

Share Document