scholarly journals Android mobile application for wildfire reporting and monitoring

2021 ◽  
Vol 10 (6) ◽  
pp. 3412-3421
Author(s):  
Rony Teguh ◽  
Fengky F. Adji ◽  
Benius Benius ◽  
Mohammad Nur Aulia

Peat fires cause major environmental problems in Central Kalimantan Province, Indonesia and threaten human health and effect the social-economic sector. The lack of peat fire detection systems is one factor that causing these reoccurring fires. Therefore, in this study, we develop an Android mobile platform application and a web-based application to support the citizen-volunteers who want to contribute wildfires reports, and the decision-makers who wish to collect, visualize, and evaluate these wildfires reports. In this paper, the global navigation satellite system (GNSS) and a global position system (GPS) sensor from a smartphone’s camera, is a useful tool to show the potential fire and smoke’s close-range location. The exchangeable image (EXIF) file image and GPS metadata captured by a mobile phone can store and supply raw observation to our devices and sent it to the data center through global internet communication. This work’s results are the proposed application easy-to-use to monitoring potential peat fire by location and data activity. This paper focuses on developing an application for the mobile platform for peat fire reporting and a web-based application to collect peat fire location for decision-makers. Our main objective is to detect the potential and spread of fire in peatlands as early as possible by utilizing community reports using smartphones.

2019 ◽  
Author(s):  
Michell Cruz ◽  
Marcio Lopes ◽  
Alen Vieira ◽  
Flávio Santos ◽  
Ricardo Shinkai ◽  
...  

Lightning is a natural phenomenon and presents severe risks to people and animals, as well as affects several segments of the productive sector. A web-based lightning monitoring system has been developed to integrate different lightning detection systems, as well as to generate spatial and tabular data and products, capable of assisting specialists and decision makers. The system also allows combining lightning data with satellite images, increasing the capacity of analysis in near real time. This tool proved to be stable and efficient, with an intuitive interface that facilitates interaction with users.


2019 ◽  
Vol 11 (12) ◽  
pp. 1471 ◽  
Author(s):  
Grazia Tucci ◽  
Antonio Gebbia ◽  
Alessandro Conti ◽  
Lidia Fiorini ◽  
Claudio Lubello

The monitoring and metric assessment of piles of natural or man-made materials plays a fundamental role in the production and management processes of multiple activities. Over time, the monitoring techniques have undergone an evolution linked to the progress of measure and data processing techniques; starting from classic topography to global navigation satellite system (GNSS) technologies up to the current survey systems like laser scanner and close-range photogrammetry. Last-generation 3D data management software allow for the processing of increasingly truer high-resolution 3D models. This study shows the results of a test for the monitoring and computing of stockpile volumes of material coming from the differentiated waste collection inserted in the recycling chain, performed by means of an unmanned aerial vehicle (UAV) photogrammetric survey and the generation of 3D models starting from point clouds. The test was carried out with two UAV flight sessions, with vertical and oblique camera configurations, and using a terrestrial laser scanner for measuring the ground control points and as ground truth for testing the two survey configurations. The computations of the volumes were carried out using two software and comparisons were made both with reference to the different survey configurations and to the computation software.


Heritage ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 2384-2397
Author(s):  
Eugenio Donato ◽  
Dario Giuffrida

In the last few years, new technologies have become indispensable tools for specialists in the field of cultural heritage for the analysis, reconstruction and interpretation of data but also for promotion of artefacts or buildings sometimes inaccessible or in a bad state of conservation. The discipline of geomatics offer many opportunities and solutions for integrated digital surveys and the documentation of heritage (point-based methods, image-based photogrammetry and their combination): These data can be processed in order to derive metric information and share them using databases or GIS (geographic information system) tools. This paper is focused on the description of combined survey methodologies adopted for the geometric and architectural documentation of the site and surviving structures of the Castel of Scalea (Cosenza, Italy). It is a typical context where traditional survey procedures do not fully succeed or require a longer amount of time and great effort if a high level of accuracy is requested: For this reason, aerial close-range digital photogrammetry enhanced by the GNSS (global navigation satellite system), and total station positioning systems have been used at various levels of detail for the production of a detailed 3D model and 2D thematic maps with an excellent level of in the positioning of the structures and in the architectural drawing. Thanks to the collected dataset, it was possible to better identify the building units (CF), to digitize the limits of the masonry stratigraphic units (USM), and to draw up a first constructive diachronic sequence hypothesis on which to base chronology. Moreover, some particular masonry techniques have been sampled and compared at the regional level with the aim to better dating of constructive expedients. It was finally demonstrated how the use of integrated methodologies allows us to obtain a complete and detailed documentation including information regarding not only architectural and geometrical features but also archaeological and historical elements, building materials and decay evidences—all useful as support of the interpretation of data.


2021 ◽  
Vol 13 (3) ◽  
pp. 395
Author(s):  
Lee Jones ◽  
Peter Hobbs

Geomatics is the discipline of electronically gathering, storing, processing, and delivering spatially related digital information; it continues to be one of the fastest expanding global markets, driven by technology. The British Geological Survey (BGS) geomatics capabilities have been utilized in a variety of scientific studies such as the monitoring of actively growing volcanic lava domes and rapidly retreating glaciers; coastal erosion and platform evolution; inland and coastal landslide modelling; mapping of geological structures and fault boundaries; rock stability and subsidence feature analysis, and geo-conservation. In 2000, the BGS became the first organization outside the mining industry to use Terrestrial LiDAR Scanning (TLS) as a tool for measuring change; paired with a Global Navigation Satellite System (GNSS), BGS were able to measure, monitor, and model geomorphological features of landslides in the United Kingdom (UK) digitally. Many technologies are used by the BGS to monitor the earth, employed on satellites, airplanes, drones, and ground-based equipment, in both research and commercial settings to carry out mapping, monitoring, and modelling of earth surfaces and processes. Outside BGS, these technologies are used for close-range, high-accuracy applications such as bridge and dam monitoring, crime and accident scene analysis, forest canopy and biomass measurements and military applications.


2022 ◽  
Vol 14 (1) ◽  
pp. 194
Author(s):  
Andrey Sirin ◽  
Maria Medvedeva

Peat fires differ from other wildfires in their duration, carbon losses, emissions of greenhouse gases and highly hazardous products of combustion and other environmental impacts. Moreover, it is difficult to identify peat fires using ground-based methods and to distinguish peat fires from forest fires and other wildfires by remote sensing. Using the example of catastrophic fires in July–August 2010 in the Moscow region (the center of European Russia), in the present study, we consider the results of peat-fire detection using Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) hotspots, peat maps, and analysis of land cover pre- and post-fire according to Landsat-5 TM data. A comparison of specific (for detecting fires) and non-specific vegetation indices showed the difference index ΔNDMI (pre- and post-fire normalized difference moisture Index) to be the most effective for detecting burns in peatlands according to Landsat-5 TM data. In combination with classification (both unsupervised and supervised), this index offered 95% accuracy (by ground verification) in identifying burnt areas in peatlands. At the same time, most peatland fires were not detected by Terra/Aqua MODIS data. A comparison of peatland and other wildfires showed the clearest differences between them in terms of duration and the maximum value of the fire radiation power index. The present results may help in identifying peat (underground) fires and their burnt areas, as well as accounting for carbon losses and greenhouse gas emissions.


2018 ◽  
Vol 24 (10) ◽  
pp. 98
Author(s):  
Omar Ali Ibrahim

Global Navigation Satellite System (GNSS) is considered to be one of the most crucial tools for different applications, i.e. transportation, geographic information systems, mobile satellite communications, and others. Without a doubt, the GNSS has been widely employed for different scientific applications, such as land surveying, mapping, and precise monitoring for huge structures, etc. Thus, an intense competitive has appeared between companies which produce geodetic GNSS hardware devices to meet all the requirements of GNSS communities. This study aims to assess the performance of different GNSS receivers to provide reliable positions. In this study, three different receivers, which are produced by different manufacturers, were fixed to form a triangle. Simultaneous observations were made in static mode (2.5 to 3 hours). This observation technique was carried out three times by changing the location of receivers in each time to ensure that three receivers observed each station three times. To evaluate the performance of each receiver, OPUS web-based processing software and TOPCON TOOLS were used to process the raw GNSS observations. The distances between adjacent stations were computed for each observation and compared to standard distances, which were measured using a total station. Furthermore, the internal angles were also computed and compared to those measured by Total Stations. The results showed that some calculated distances are closer to the corresponding distances measured by the total station. This indicates that the receivers involved in the composition of these distances are the most accurate.  


2019 ◽  
Vol 9 ◽  
pp. A41 ◽  
Author(s):  
Sreeja Vadakke Veettil ◽  
Claudio Cesaroni ◽  
Marcio Aquino ◽  
Giorgiana De Franceschi ◽  
Francesco Berrili ◽  
...  

The effect of the Earth’s ionosphere represents the single largest contribution to the Global Navigation Satellite System (GNSS) error budget and abnormal ionospheric conditions can impose serious degradation on GNSS system functionality, including integrity, accuracy and availability. With the growing reliance on GNSS for many modern life applications, actionable ionospheric forecasts can contribute to the understanding and mitigation of the impact of the ionosphere on our technology based society. In this context, the Ionosphere Prediction Service (IPS) project was set up to design and develop a prototype platform to translate the forecast of the ionospheric effects into a service customized for specific GNSS user communities. To achieve this overarching aim, four different product groups dealing with solar activity, ionospheric activity, GNSS receiver performance and service performance have been developed and integrated into a service chain, which is made available through a web based platform. This paper provides an overview of the IPS project describing its overall architecture, products and web based platform.


Author(s):  
Andrea Donnellan ◽  
Jay Parker ◽  
Michael Heflin ◽  
Margaret Glasscoe ◽  
Gregory Lyzenga ◽  
...  

AbstractGeoGateway (http://geo-gateway.org) is a web-based interface for analysis and modeling of geodetic imaging data and to support response to related disasters. Geodetic imaging data product currently supported by GeoGateway include Global Navigation Satellite System (GNSS) daily position time series and derived velocities and displacements and airborne Interferometric Synthetic Aperture Radar (InSAR) from NASA’s UAVSAR platform. GeoGateway allows users to layer data products in a web map interface and extract information from various tools. Extracted products can be downloaded for further analysis. GeoGateway includes overlays of California fault traces, seismicity from user selected search parameters, and user supplied map files. GeoGateway also provides earthquake nowcasts and hazard maps as well as products created for related response to natural disasters. A user guide is present in the GeoGateway interface. The GeoGateway development team is also growing the user base through workshops, webinars, and video tutorials. GeoGateway is used in the classroom and for research by experts and non-experts including by students.


2016 ◽  
Author(s):  
Ricardo Rodríguez ◽  
Julián Aguirre ◽  
Andrés Díez ◽  
Marina Álvarez ◽  
Pedro Rodríguez

Abstract. The study of glacier fronts combines different geomatics measurement techniques as the classic survey using total station or theodolite, technical GNSS (Global Navigation Satellite System), using laser-scanner or using photogrammetry (air or ground). The measure by direct methods (classical surveying and GNSS) is useful and fast when accessibility to the glaciers fronts is easy, while it is practically impossible to realize, in the case of glacier fronts that end up in the sea (tide water glaciers). In this paper, a methodology that combines photogrammetric methods and other techniques for lifting the front of the glacier Johnsons, inaccessible is studied. The images obtained from the front, come from a non-metric digital camera; its georeferencing to a global coordinate system is performed by measuring points GNSS support in accessible areas of the glacier front side and applying methods of direct intersection in inaccessible points of the front, taking measurements with theodolite. The result of observations obtained were applied to study the temporal evolution (1957–2014) of the position of the Johnsons glacier front and the position of the Argentina, Las Palmas and Sally Rocks lobes front (Hurd glacier). Link to the data repository: doi:10.1594/PANGAEA.845379


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1696 ◽  
Author(s):  
Dongsheng Wang ◽  
Yongjie Lu ◽  
Lei Zhang ◽  
Guoping Jiang

Many traffic occasions such as tunnels, subway stations and underground parking require accurate and continuous positioning. Navigation and timing services offered by the Global Navigation Satellite System (GNSS) is the most popular outdoor positioning method, but its signals are vulnerable to interference, leading to a degraded performance or even unavailability. The combination of magnetometer and Inertial Measurement Unit (IMU) is one of the commonly used indoor positioning methods. Within the proposed mobile platform for positioning in seamless indoor and outdoor scenes, the data of magnetometer and IMU are used to update the positioning when the GNSS signals are weak. Because the magnetometer is susceptible to environmental interference, an intelligent method for calculating heading angle by magnetometer is proposed, which can dynamically calculate and correct the heading angle of the mobile platform in a working environment. The results show that the proposed method of calculating heading angle by magnetometer achieved better performance with interference existence. Compared with the uncorrected heading angle, the corrected accuracy results could be improved by 60%, and the effect was more obvious when the interference was stronger. The error of overall positioning trajectory and true trajectory was within 2 m.


Sign in / Sign up

Export Citation Format

Share Document