scholarly journals Novel approach of association rule mining for tree canopy assessment

Author(s):  
Nilkamal More ◽  
V. B. Nikam ◽  
Biplab Banerjee

The evolution of technology and availability of voluminous satellite images are bringing a new scenario in satellite image classification where a performance efficient method for predictive analysis of satellite images for land cover classification needs to be devised. As urban areas are growing at faster rate, special attention needs to be given to solve tree canopy assessment problem. Vegetation indices are calculated from spectral information of satellite images. Hundreds of such vegetation indices are available to detect vegetation from a satellite image. The contribution of this paper is designing an improved Apriori algorithm to select optimal number of vegetation indices for tree canopy assessment. In this research, we propose a novel computational approach that allows the improvement of results. It selects optimal combination of vegetation indices and applies principal component analysis on it. It uses a greedy approach based on Apriori algorithm. This study emphasizes on assessment of tree canopy using GPU-enabled environment for performance-efficient assessment. The results achieved, are comparable to state-of-the-art techniques, with an accuracy of 96%. The research has considered 4 years data for Mumbai city of India. This research is useful for Green India Mission of India to assess tree canopy of urban region.

Author(s):  
H. Amini Amirkolaee ◽  
H. Arefi

Abstract. In this paper, a novel approach is proposed for 3D change detection in urban areas using only a single satellite images. To this purpose, a dense convolutional neural network (DCNN) is utilized in order to estimate a digital surface model (DSM) from a single image. In this regard, a densely connected convolutional network is employed for feature extraction and an upsampling method based on dilated convolution is employed for estimating the height values. The proposed DCNN is trained using satellite and Light Detection and Ranging (LiDAR) data which are provided in 2012 from Isfahan, Iran. Subsequently, the trained network is utilized in order to estimate DSM of a single satellite image that is provided in 2006. Finally, the changed areas are detected by subtracting the estimated DSMs. Evaluating the accuracy of the detected changed areas indicates 66.59, 72.90 and 67.90 for correctness, completeness, and kappa, respectively.


2018 ◽  
Vol 10 (10) ◽  
pp. 1555 ◽  
Author(s):  
Caio Fongaro ◽  
José Demattê ◽  
Rodnei Rizzo ◽  
José Lucas Safanelli ◽  
Wanderson Mendes ◽  
...  

Soil mapping demands large-scale surveys that are costly and time consuming. It is necessary to identify strategies with reduced costs to obtain detailed information for soil mapping. We aimed to compare multispectral satellite image and relief parameters for the quantification and mapping of clay and sand contents. The Temporal Synthetic Spectral (TESS) reflectance and Synthetic Soil Image (SYSI) approaches were used to identify and characterize texture spectral signatures at the image level. Soil samples were collected (0–20 cm depth, 919 points) from an area of 14,614 km2 in Brazil for reference and model calibration. We compared different prediction approaches: (a) TESS and SYSI; (b) Relief-Derived Covariates (RDC); and (c) SYSI plus RDC. The TESS method produced highly similar behavior to the laboratory convolved data. The sandy textural class showed a greater increase in average spectral reflectance from Band 1 to 7 compared with the clayey class. The prediction using SYSI produced a better result for clay (R2 = 0.83; RMSE = 65.0 g kg−1) and sand (R2 = 0.86; RMSE = 79.9 g kg−1). Multispectral satellite images were more stable for the identification of soil properties than relief parameters.


2019 ◽  
Vol 11 (9) ◽  
pp. 1097 ◽  
Author(s):  
Aleš Marsetič ◽  
Peter Pehani

This paper presents an automatic procedure for the geometric corrections of very-high resolution (VHR) optical panchromatic satellite images. The procedure is composed of three steps: an automatic ground control point (GCP) extraction algorithm that matches the linear features that were extracted from the satellite image and reference data; a geometric model that applies a rational function model; and, the orthorectification procedure. Accurate geometric corrections can only be achieved if GCPs are employed to precisely correct the geometric biases of images. Due to the high resolution and the varied acquisition geometry of images, we propose a fast, segmentation based method for feature extraction. The research focuses on densely populated urban areas, which are very challenging in terms of feature extraction and matching. The proposed algorithm is capable of achieving results with a root mean square error of approximately one pixel or better, on a test set of 14 panchromatic Pléiades images. The procedure is robust and it performs well in urban areas, even for images with high off-nadir angles.


2019 ◽  
Vol 135 ◽  
pp. 01064
Author(s):  
Vladimir Khryaschev ◽  
Leonid Ivanovsky

The goal of our research was to develop methods based on convolutional neural networks for automatically extracting the locations of buildings from high-resolution aerial images. To analyze the quality of developed deep learning algorithms, there was used Sorensen-Dice coefficient of similarity which compares results of algorithms with real masks. These masks were generated automatically from json files and sliced on smaller parts together with respective aerial photos before the training of developed convolutional neural networks. This approach allows us to cope with the problem of segmentation for high-resolution satellite images. All in all we show how deep neural networks implemented and launched on modern GPUs of high-performance supercomputer NVIDIA DGX-1 can be used to efficiently learn and detect needed objects. The problem of building detection on satellite images can be put into practice for urban planning, building control of some municipal objects, search of the best locations for future outlets etc.


Author(s):  
Mihai Valentin Herbei ◽  
Cosmin Alin Popescu ◽  
Radu Bertici ◽  
Adrian Smuleac ◽  
George Popescu

Image analysis methods were developed and diversified greatly in recent years due to increasing speed and accuracy in providing information regarding land cover and vegetation in urban areas. The aim of this paper is to process satellite images for monitoring agricultural areas. Satellite images used in this study are medium and high resolution images taken from QuickBird and SPOT systems. Based on these images, a supervised classification was performed of a very large area, having as result the land use classes. Supervised classification can be defined as the ability to group the pixels that compose the satellite image, digitally, in accordance with their real significance. Gaussian algorithm of maximum similarity (Maximum likelihood) was used, referred to in the specialty literature as maximum likelihood method or probabilistic classification, and based on the use of probability theory (function Gaussian) to compare the spectral values of each pixel in hand with statistical " fingerprint "of each area of interest. Practically, conditional probabilities were calculated of belonging to one class or another. The points in the middle of the group have a higher probability of belonging to the certain class, probability intervals (concentric isolines or contours of equal probability) being delimited graphically by izocontours expressing spectral variations within each set of training.


2010 ◽  
Vol 90 (3) ◽  
pp. 225-237
Author(s):  
Vladan Tadic ◽  
Dragoljub Sekulovic ◽  
Slavisa Tatomirovic

This paper shows possibilities of using the WORLDVIEW-1 satellite images as a base for creating and updating cartographic materials. It also describes the entire applied procedure for satellite images processing so that they could be used in cartography.


2020 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Faradina Marzukhi ◽  
Nur Nadhirah Rusyda Rosnan ◽  
Md Azlin Md Said

The aim of this study is to analyse the relationship between vegetation indices of Normalized Difference Vegetation Index (NDVI) and soil nutrient of oil palm plantation at Felcra Nasaruddin Bota in Perak for future sustainable environment. The satellite image was used and processed in the research. By Using NDVI, the vegetation index was obtained which varies from -1 to +1. Then, the soil sample and soil moisture analysis were carried in order to identify the nutrient values of Nitrogen (N), Phosphorus (P) and Potassium (K). A total of seven soil samples were acquired within the oil palm plantation area. A regression model was then made between physical condition of the oil palms and soil nutrients for determining the strength of the relationship. It is hoped that the risk map of oil palm healthiness can be produced for various applications which are related to agricultural plantation.


2020 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Negar Tavasoli ◽  
Hossein Arefi

Assessment of forest above ground biomass (AGB) is critical for managing forest and understanding the role of forest as source of carbon fluxes. Recently, satellite remote sensing products offer the chance to map forest biomass and carbon stock. The present study focuses on comparing the potential use of combination of ALOSPALSAR and Sentinel-1 SAR data, with Sentinel-2 optical data to estimate above ground biomass and carbon stock using Genetic-Random forest machine learning (GA-RF) algorithm. Polarimetric decompositions, texture characteristics and backscatter coefficients of ALOSPALSAR and Sentinel-1, and vegetation indices, tasseled cap, texture parameters and principal component analysis (PCA) of Sentinel-2 based on measured AGB samples were used to estimate biomass. The overall coefficient (R2) of AGB modelling using combination of ALOSPALSAR and Sentinel-1 data, and Sentinel-2 data were respectively 0.70 and 0.62. The result showed that Combining ALOSPALSAR and Sentinel-1 data to predict AGB by using GA-RF model performed better than Sentinel-2 data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreas Buerkert ◽  
Bryan Adam Dix ◽  
Mohamed Nasser Al Rawahi ◽  
Eva Schlecht

AbstractThe millenia-old oasis systems in the Western Hajar Mountains of Northern Oman have received widespread attention as models of sustainable irrigated agriculture in hyperarid Arabia. Given Oman’s rampant urbanization, growing scarcity of water and skilled labour, we quantified chances in water use, land use, and land cover between 2007 and 2018 using a rare time-series approach of detailed GIS-based crop mapping. Results from satellite image analysis and comprehensive ground truthing showed that urban areas grew from 206 ha in 2009 to 230 ha in 2014 and 252 ha in 2018. Throughout this decade, irrigated areas in backyards and front-house gardens of the town, planted largely to tree crops and vegetables, increased from 13.5 to 23.3 ha. Between 2007 and 2018 the actively used area of the studied oasis systems declined by 2.0% and the share of perennial crops without underplanting by 5.1%, while land under agroforestry increased by 2.1% and fallow land by 3.5%. Rising water demand of the sprawling town Sayh Qatanah led to terraces of Al ‘Ayn and Ash Sharayjah now being partly irrigated with treated wastewater which accelerated the abandonment of the old settlement structures. The labour- and water use efficiency-driven transformation of the Al Jabal Al Akhdar oasis agriculture into increasingly market-oriented landuse systems questions its function as example of sustainable, bio-cultural heritage of Arabia.


Sign in / Sign up

Export Citation Format

Share Document