scholarly journals Modeling and control of 41-level inverter using best switching angles calculation method

Author(s):  
Alla Eddine Toubal Maamar ◽  
M'hamed Helaimi ◽  
Rachid Taleb ◽  
Abdelatif Gadoum

<div data-canvas-width="257.02725257004636">In this paper, analysis and modeling of a single-phase H-bridge forty-one level inverter are con sidered. The control of proposed inverter by equal-phase and half-height methods is implemented. MATLAB/Simulink environments are used to simulate the model an d show obtained results of waveforms with FFT analysis. Eventually, the total harmonic distortion obtained for each level with the two methods is presented, comparatively, for a comparison.</div>

2018 ◽  
Vol 7 (2.24) ◽  
pp. 55
Author(s):  
Anuja Prashant Diwan ◽  
N Booma Nagarajan ◽  
T Murugan ◽  
S Ashrafudeen ◽  
G J. Jenito Paul

In this paper, single phase nine level cascaded multilevel inverter using trinary voltage source is described. Normally for getting nine level MLI output, four H-Bridges are required. But in proposed method, nine level output is achieved by using two H-Bridges only. Performance of Multilevel inverter is improved by using modular switching pattern. This method reduces the number of switches to the half and thus reduces switching losses. Since the number of levels at the output voltage is increased, Total Harmonic Distortion (THD) gets reduced significantly. This presents simple configuration is simple and can be controlled easily. MATLAB-SIMULINK is used to validate the results of proposed technic, simulation is carried out using. The proposed method has been exhaustively compared with classical cascaded H-Bridge topology. 


Author(s):  
Abdullahi Mohamed ◽  
Suriana Salimin

<span lang="EN-US">This paper observe the total harmonic distortion (THD) performance of single phase five level inverter using proportional resonant (PR) and harmonic compensators current controller. The THD when adding PR current controller was 1.6% at first. After more functions were added to the PR current controller to reduce the THD at the 3<sup>rd</sup>, 5<sup>th</sup> and 7<sup>th</sup> harmonic orders, the THD of the 3<sup>rd</sup> harmonic order was reduced from 0.45% to 0.1% while the 5<sup>th</sup> and 7<sup>th</sup> harmonic orders were reduced from 0.6% and 0.43% to 0.25% and 0.4% respectively. The development and simulation is performed using Matlab/Simulink. The simulation result is performed by using Fast Fourier Transform analysis (FFT) for the harmonics captured.</span>


2021 ◽  
Vol 19 (02) ◽  
pp. 250-259
Author(s):  
Jakson Paulo Bonaldo ◽  
Jose de Arimateia Olimpio Filho ◽  
Augusto Matheus dos Santos Alonso ◽  
Helmo Kelis Morales Paredes ◽  
Fernando Pinhabel Marafao

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3467 ◽  
Author(s):  
Po Li ◽  
Ruiyu Li ◽  
Haifeng Feng

Inverters are commonly controlled to generate AC current and Total Harmonic Distortion (THD) is the core index in judging the control effect. In this paper, a THD oriented Finite Control Set Model Predictive Control (FCS MPC) scheme is proposed for the single-phase inverter, where a optimization problem is solved to obtain the switching law for realization. Different from the traditional cost function, which focuses on the instantaneous deviation of amplitude between predictive current and its reference, we redesign a cost function that is the linear combination of the current fundamental tracking error, instantaneous THD value and DC component in one fundamental cycle (for 50 Hz, it is 0.02 s). Iterative method is developed for rapid calculation of this cost function. By choosing a switching state from a FCS to minimize the cost function, a FCS MPC is finally constructed. Simulation results in Matlab/Simulink and experimental results on rapid control prototype platform show the effect of this method. Analyses illustrate that, by choosing suitable weight of the cost function, the performance of this THD oriented FCS MPC method is better than the traditional one.


2018 ◽  
Vol 7 (3) ◽  
pp. 1059
Author(s):  
Mustafa Fawzi Mohammed ◽  
Ali Husain Ahmad ◽  
AbdulRahim Thiab Humod

The most concerns in the inverter's design are about, how to make the output voltage of the inverter sinusoidal at the desired fundamental frequency with low total harmonic distortion (THD). This paper presents a design and implementation of single-phase five-level inverter which is powered by single dc source and based on T-type multi-level inverters construction. The proposed inverter is built mainly by six IGBTs and two diodes. The used modulation technique is based on using two triangular carriers at 2000 Hz frequency and shifted by phase opposition disposition (POD) method. The carriers are made slightly unbalanced with their amplitudes. The over-modulation method is also introduced in the design to get the lowest possible THD effect without using filters. The inverter is simulated by MATLAB SIMULINK, implemented practically, and tested with the help of LabVIEW software.  


Sign in / Sign up

Export Citation Format

Share Document