scholarly journals Comparative study on machine learning algorithms for early fire forest detection system using geodata.

Author(s):  
Zouiten Mohammed ◽  
Chaaouan Hanae ◽  
Setti Larbi

Forest fires have caused considerable losses to ecologies, societies and economies worldwide. To minimize these losses and reduce forest fires, modeling and predicting the occurrence of forest fires are meaningful because they can support forest fire prevention and management. In recent years, the convolutional neural network (CNN) has become an important state-of-the-art deep learning algorithm, and its implementation has enriched many fields. Therefore, a competitive spatial prediction model for automatic early detection of wild forest fire using machine learning algorithms can be proposed. This model can help researchers to predict forest fires and identify risk zonas. System using machine learning algorithm on geodata will be able to notify in real time the interested parts and authorities by providing alerts and presenting on maps based on geographical treatments for more efficacity and analyzing of the situation. This research extends the application of machine learning algorithms for early fire forest prediction to detection and representation in geographical information system (GIS) maps.

2021 ◽  
Vol 35 (4) ◽  
pp. 349-357
Author(s):  
Shilpa P. Khedkar ◽  
Aroul Canessane Ramalingam

The Internet of Things (IoT) is a rising infrastructure of 21st century. The classification of traffic over IoT networks is attained significance importance due to rapid growth of users and devices. It is need of the hour to isolate the normal traffic from the malicious traffic and to assign the normal traffic to the proper destination to suffice the QoS requirements of the IoT users. Detection of malicious traffic can be done by continuously monitoring traffic for suspicious links, files, connection created and received, unrecognised protocol/port numbers, and suspicious Destination/Source IP combinations. A proficient classification mechanism in IoT environment should be capable enough to classify the heavy traffic in a fast manner, to deflect the malevolent traffic on time and to transmit the benign traffic to the designated nodes for serving the needs of the users. In this work, adaboost and Xgboost machine learning algorithms and Deep Neural Networks approach are proposed to separate the IoT traffic which eventually enhances the throughput of IoT networks and reduces the congestion over IoT channels. The result of experiment indicates a deep learning algorithm achieves higher accuracy compared to machine learning algorithms.


Author(s):  
Saruni Dwiasnati ◽  
Yudo Devianto

Forest fires that occur will cause various kinds of problems, both in terms of health, such as smoke that can interfere with the respiratory system, in terms of the economy such as the economic wheel cannot run as usual, in terms of the environment can damage the surrounding environment and the environment that is missed by smoke, and other disasters. Forest fires can also have an impact on the costs that will be incurred to resolve the problems that arise due to forest fires, so research is needed to find out and measure the area affected by forest fires that burned in the range of 1980 - 2019 using a dataset of approximately 10,000. The target in this research is to be able to generate the best percentage scenario and find out the model of using the algorithm used to explore the algorithm in the Machine Learning method for the model for estimating the area of forest fires, namely the Siak Kampar Peninsula in Riau Province. In this study, 7 parameters were used to create a forest and land fire hazard map, namely weather temperature, Burned Area Density, hotspot density, wind speed, land cover type, rainfall, and land use. The seven parameters will be searched for accuracy results using the Classification method with Machine Learning algorithms, including Naïve Bayes, SVM, and K-Nearest Neighbor (K-NN). In this study, comparisons were made to obtain the best algorithm for estimating forest fire areas. By generating each algorithm is 71.72% for the Naïve Bayes algorithm, 75.00% for the SVM algorithm, and 64.71% for the K-NN algorithm.


2021 ◽  
Vol 12 ◽  
Author(s):  
Suk-Young Kim ◽  
Taesung Park ◽  
Kwonyoung Kim ◽  
Jihoon Oh ◽  
Yoonjae Park ◽  
...  

Purpose: The number of patients with alcohol-related problems is steadily increasing. A large-scale survey of alcohol-related problems has been conducted. However, studies that predict hazardous drinkers and identify which factors contribute to the prediction are limited. Thus, the purpose of this study was to predict hazardous drinkers and the severity of alcohol-related problems of patients using a deep learning algorithm based on a large-scale survey data.Materials and Methods: Datasets of National Health and Nutrition Examination Survey of South Korea (K-NHANES), a nationally representative survey for the entire South Korean population, were used to train deep learning and conventional machine learning algorithms. Datasets from 69,187 and 45,672 participants were used to predict hazardous drinkers and the severity of alcohol-related problems, respectively. Based on the degree of contribution of each variable to deep learning, it was possible to determine which variable contributed significantly to the prediction of hazardous drinkers.Results: Deep learning showed the higher performance than conventional machine learning algorithms. It predicted hazardous drinkers with an AUC (Area under the receiver operating characteristic curve) of 0.870 (Logistic regression: 0.858, Linear SVM: 0.849, Random forest classifier: 0.810, K-nearest neighbors: 0.740). Among 325 variables for predicting hazardous drinkers, energy intake was a factor showing the greatest contribution to the prediction, followed by carbohydrate intake. Participants were classified into Zone I, Zone II, Zone III, and Zone IV based on the degree of alcohol-related problems, showing AUCs of 0.881, 0.774, 0.853, and 0.879, respectively.Conclusion: Hazardous drinking groups could be effectively predicted and individuals could be classified according to the degree of alcohol-related problems using a deep learning algorithm. This algorithm could be used to screen people who need treatment for alcohol-related problems among the general population or hospital visitors.


Computers ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 113
Author(s):  
James Coe ◽  
Mustafa Atay

The research aims to evaluate the impact of race in facial recognition across two types of algorithms. We give a general insight into facial recognition and discuss four problems related to facial recognition. We review our system design, development, and architectures and give an in-depth evaluation plan for each type of algorithm, dataset, and a look into the software and its architecture. We thoroughly explain the results and findings of our experimentation and provide analysis for the machine learning algorithms and deep learning algorithms. Concluding the investigation, we compare the results of two kinds of algorithms and compare their accuracy, metrics, miss rates, and performances to observe which algorithms mitigate racial bias the most. We evaluate racial bias across five machine learning algorithms and three deep learning algorithms using racially imbalanced and balanced datasets. We evaluate and compare the accuracy and miss rates between all tested algorithms and report that SVC is the superior machine learning algorithm and VGG16 is the best deep learning algorithm based on our experimental study. Our findings conclude the algorithm that mitigates the bias the most is VGG16, and all our deep learning algorithms outperformed their machine learning counterparts.


2020 ◽  
pp. 1-11
Author(s):  
Jie Liu ◽  
Lin Lin ◽  
Xiufang Liang

The online English teaching system has certain requirements for the intelligent scoring system, and the most difficult stage of intelligent scoring in the English test is to score the English composition through the intelligent model. In order to improve the intelligence of English composition scoring, based on machine learning algorithms, this study combines intelligent image recognition technology to improve machine learning algorithms, and proposes an improved MSER-based character candidate region extraction algorithm and a convolutional neural network-based pseudo-character region filtering algorithm. In addition, in order to verify whether the algorithm model proposed in this paper meets the requirements of the group text, that is, to verify the feasibility of the algorithm, the performance of the model proposed in this study is analyzed through design experiments. Moreover, the basic conditions for composition scoring are input into the model as a constraint model. The research results show that the algorithm proposed in this paper has a certain practical effect, and it can be applied to the English assessment system and the online assessment system of the homework evaluation system algorithm system.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 656
Author(s):  
Xavier Larriva-Novo ◽  
Víctor A. Villagrá ◽  
Mario Vega-Barbas ◽  
Diego Rivera ◽  
Mario Sanz Rodrigo

Security in IoT networks is currently mandatory, due to the high amount of data that has to be handled. These systems are vulnerable to several cybersecurity attacks, which are increasing in number and sophistication. Due to this reason, new intrusion detection techniques have to be developed, being as accurate as possible for these scenarios. Intrusion detection systems based on machine learning algorithms have already shown a high performance in terms of accuracy. This research proposes the study and evaluation of several preprocessing techniques based on traffic categorization for a machine learning neural network algorithm. This research uses for its evaluation two benchmark datasets, namely UGR16 and the UNSW-NB15, and one of the most used datasets, KDD99. The preprocessing techniques were evaluated in accordance with scalar and normalization functions. All of these preprocessing models were applied through different sets of characteristics based on a categorization composed by four groups of features: basic connection features, content characteristics, statistical characteristics and finally, a group which is composed by traffic-based features and connection direction-based traffic characteristics. The objective of this research is to evaluate this categorization by using various data preprocessing techniques to obtain the most accurate model. Our proposal shows that, by applying the categorization of network traffic and several preprocessing techniques, the accuracy can be enhanced by up to 45%. The preprocessing of a specific group of characteristics allows for greater accuracy, allowing the machine learning algorithm to correctly classify these parameters related to possible attacks.


Sign in / Sign up

Export Citation Format

Share Document