scholarly journals Potential key challenges for terahertz communication systems

Author(s):  
Ahmad A. A. Solyman ◽  
Ismail A. Elhaty

The vision of 6G communications is an improved performance of the data rate and latency limitations and permit ubiquitous connectivity. In addition, 6G communications will adopt a novel strategy. Terahertz (THz) waves will characterize 6G networks, due to 6G will integrate terrestrial wireless mobile communication, geostationary and medium and low orbit satellite communication and short distance direct communication technologies, as well as integrate communication, computing, and navigation. This study discusses the key challenges of THz waves, including path losses which is considered the main challenge; transceiver architectures and THz signal generators; environment of THz with network architecture and 3D communications; finally, Safety and health issues.

2021 ◽  
Author(s):  
Simon Bos ◽  
Evgenii Vinogradov ◽  
Sofie Pollin

Recently, deep learning is considered to optimize the end-to-end performance of digital communication systems. The promise of learning a digital communication scheme from data is attractive, since this makes the scheme adaptable and precisely tunable to many scenarios and channel models. In this paper, we analyse a widely used neural network architecture and show that the training of the end-to-end architecture suffers from normalization errors introduced by an average power constraint. To solve this issue, we propose a modified architecture: shifting the batch slicing after the normalization layer. This approach meets the normalization constraints better, especially in the case of small batch sizes. Finally, we experimentally demonstrate that our modified architecture leads to significantly improved performance of trained models, even for large batch sizes where normalization constraints are more easily met.<br>


2021 ◽  
Vol 13 (4) ◽  
pp. 1821
Author(s):  
Nahina Islam ◽  
Md Mamunur Rashid ◽  
Faezeh Pasandideh ◽  
Biplob Ray ◽  
Steven Moore ◽  
...  

To reach the goal of sustainable agriculture, smart farming is taking advantage of the Unmanned Aerial Vehicles (UAVs) and Internet of Things (IoT) paradigm. These smart farms are designed to be run by interconnected devices and vehicles. Some enormous potentials can be achieved by the integration of different IoT technologies to achieve automated operations with minimum supervision. This paper outlines some major applications of IoT and UAV in smart farming, explores the communication technologies, network functionalities and connectivity requirements for Smart farming. The connectivity limitations of smart agriculture and it’s solutions are analysed with two case studies. In case study-1, we propose and evaluate meshed Long Range Wide Area Network (LoRaWAN) gateways to address connectivity limitations of Smart Farming. While in case study-2, we explore satellite communication systems to provide connectivity to smart farms in remote areas of Australia. Finally, we conclude the paper by identifying future research challenges on this topic and outlining directions to address those challenges.


2021 ◽  
Author(s):  
Simon Bos ◽  
Evgenii Vinogradov ◽  
Sofie Pollin

Recently, deep learning is considered to optimize the end-to-end performance of digital communication systems. The promise of learning a digital communication scheme from data is attractive, since this makes the scheme adaptable and precisely tunable to many scenarios and channel models. In this paper, we analyse a widely used neural network architecture and show that the training of the end-to-end architecture suffers from normalization errors introduced by an average power constraint. To solve this issue, we propose a modified architecture: shifting the batch slicing after the normalization layer. This approach meets the normalization constraints better, especially in the case of small batch sizes. Finally, we experimentally demonstrate that our modified architecture leads to significantly improved performance of trained models, even for large batch sizes where normalization constraints are more easily met.<br>


Author(s):  
Michail Yu. Maslov ◽  
Yuri M. Spodobaev

Telecommunications industry evolution shows the highest rates of transition to high-tech systems and is accompanied by a trend of deep mutual penetration of technologies - convergence. The dominant telecommunication technologies have become wireless communication systems. The widespread use of modern wireless technologies has led to the saturation of the environment with technological electromagnetic fields and the actualization of the problems of protecting the population from them. This fundamental restructuring has led to a uniform dense placement of radiating fragments of network technologies in the mudflow areas. The changed parameters of the emitted fields became the reason for the revision of the regulatory and methodological support of electromagnetic safety. A fragmented structural, functional and parametric analysis of the problem of protecting the population from the technological fields of network technologies revealed uncertainty in the interpretation of real situations, vulnerability, weakness and groundlessness of the methodological basis of sanitary-hygienic approaches. It is shown that this applies to all stages of the electromagnetic examination of the emitting fragments of network technologies. Distrust arises on the part of specialists and the population in not only the system of sanitary-hygienic control, but also the safety of modern network technologies is being called into question. Growing social tensions and radio phobia are everywhere accompanying the development of wireless communication technologies. The basis for solving almost all problems of protecting the population can be the transfer of subjective methods and means of monitoring and sanitary-hygienic control of electromagnetic fields into the field of IT.


2018 ◽  
Author(s):  
Phanidra Palagummi ◽  
Vedant Somani ◽  
Krishna M. Sivalingam ◽  
Balaji Venkat

Networking connectivity is increasingly based on wireless network technologies, especially in developing nations where the wired network infrastructure is not accessible to a large segment of the population. Wireless data network technologies based on 2G and 3G are quite common globally; 4G-based deployments are on the rise during the past few years. At the same time, the increasing high-bandwidth and low-latency requirements of mobile applications has propelled the Third Generation Partnership Project (3GPP) standards organization to develop standards for the next generation of mobile networks, based on recent advances in wireless communication technologies. This standard is called the Fifth Generation (5G) wireless network standard. This paper presents a high-level overview of the important architectural components, of the advanced communication technologies, of the advanced networking technologies such as Network Function Virtualization and other important aspects that are part of the 5G network standards. The paper also describes some of the common future generation applications that require low-latency and high-bandwidth communications.


Author(s):  
Teodor Narytnik ◽  
Vladimir Saiko

The technical aspects of the main promising projects in the segments of medium and low-orbit satellite communication systems are considered, as well as the project of the domestic low-orbit information and telecommunications system using the terahertz range, which is based on the use of satellite platforms of the micro- and nanosatellite class and the distribution of functional blocks of complex satellite payloads more high-end on multiple functionally related satellites. The proposed system of low-orbit satellite communications represents the groupings of low-orbit spacecraft (LEO-system) with the architecture of a "distributed satellite", which include the groupings of the root (leading) satellites and satellite repeaters (slaves). Root satellites are interconnected in a ring network by high-speed links between the satellites. The geometric size of the “distributed satellite” is the area around the root satellite with a radius of about 1 km. The combination of beams, which are formed by the repeater satellites, make up the service area of the LEO system. The requirements for the integrated service area of the LEO system (geographical service area) determine the requirements for the number of distributed satellites in the system as a whole. In the proposed system to reduce mutual interference between the grouping of the root (leading) satellites and repeater satellites (slaves) and, accordingly, minimizing distortions of the information signal when implementing inter-satellite communication, this line (radio channel) was created in an unlicensed frequency (e.g., in the terahertz 140 GHz) range. In addition, it additionally allows you to minimize the size of the antennas of such a broadband channel and simplify the operation of these satellite systems.


Sign in / Sign up

Export Citation Format

Share Document