scholarly journals Outage performance analysis of non-orthogonal multiple access systems with RF energy harvesting

Author(s):  
Hoang Thien Van ◽  
Vo Tien Anh ◽  
Danh Hong Le ◽  
Ma Quoc Phu ◽  
Hoang-Sy Nguyen

Non-orthogonal multiple access (NOMA) has drawn enormous attention from the research community as a promising technology for future wireless communications with increasing demands of capacity and throughput. Especially, in the light of fifth-generation (5G) communication where multiple internet-of-things (IoT) devices are connected, the application of NOMA to indoor wireless networks has become more interesting to study. In view of this, we investigate the NOMA technique in energy harvesting (EH) half-duplex (HD) decode-and-forward (DF) power-splitting relaying (PSR) networks over indoor scenarios which are characterized by log-normal fading channels. The system performance of such networks is evaluated in terms of outage probability (OP) and total throughput for delay-limited transmission mode whose expressions are derived herein. In general, we can see in details how different system parameters affect such networks thanks to the results from Monte Carlo simulations. For illustrating the accuracy of our analytical results, we plot them along with the theoretical ones for comparison.

Author(s):  
Hoang-Phuong Van ◽  
Hoang-Sy Nguyen

Most of the existing studies on energy harvesting (EH) cooperative relaying networks are conducted for the outdoor environments which are mainly characterized by Rayleigh fading channels. However, there are not as many studies that consider the indoor environments whereas the state-of-the-art internet of things (IoT) and smart city applications are built upon. Thus, in this paper, we analyze a namely hybrid time-power splitting relaying (HTPSR) protocol in a full-duplex (FD) decode-and-forward (DF) battery-energized relaying network in indoor scenarios modelled by the unpopular log-normal fading channels. Firstly, we formulate the analytical expression of the outage probability (OP) then the system throughput. Accordingly, we simulate the derived expressions with the Monte Carlo method. It is worth mentioning that in our work, the simulation and the theory agree well with each other. From the simulation results, we know how to compromise either the power splitting (PS) or the time splitting (TS) factors for optimizing the system performance.


2021 ◽  
Vol 27 (3) ◽  
pp. 78-83
Author(s):  
Hoang Thien Van ◽  
Quyet-Nguyen Van ◽  
Danh Hong Le ◽  
Lukas Sevcik ◽  
Nguyen Hoang Duy ◽  
...  

Due to the development of state-of-the-art fifth-generation communication (5G) and Internet-of-Things (IoT), the demands for capacity and throughput of wireless networks have increased significantly. As a promising solution for this, a radio access technique, namely, non-orthogonal multiple access (NOMA) has been investigated. Particularly, in this paper, we analyse the system performance of a joint time allocation and power splitting (JTAPS) protocol for NOMA-based energy harvesting (EH) wireless networks over indoor scenarios, which we modelled with log-normal fading channels. Accordingly, for the performance analysis of such networks, the analytical expression of a metric so-called “ergodic outage probability” was derived. Then, thanks to Monte Carlo simulations done in Matlab, we are able to see how different EH power splitting (PS) and EH time switching (TS) factors influence the ergodic outage probability. Last, but not least, we plot the simulation results along with the theoretical results for comparison studies.


2019 ◽  
Vol 25 (3) ◽  
pp. 85-91
Author(s):  
Hoang Thien Van ◽  
Hoang-Sy Nguyen ◽  
Thanh-Sang Nguyen ◽  
Van Van Huynh ◽  
Thanh-Long Nguyen ◽  
...  

In recent years, although non-orthogonal multiple access (NOMA) has shown its potentials thanks to its ability to enhance the performance of future wireless communication networks, a number of issues emerge related to the improvement of NOMA systems. In this work, we consider a half-duplex (HD) relaying cooperative NOMA network using decode-and-forward (DF) transmission mode with energy harvesting (EH) capacity, where we assume the NOMA destination (D) is able to receive two data symbols in two continuous time slots which leads to the higher transmission rate than traditional relaying networks. To analyse EH, we deploy time-switching (TS) architecture to comprehensively study the optimal transmission time and outage performance at D. In particular, we are going to obtain closed-form expressions for outage probability (OP) with optimal TS ratio for both data symbols with both exact and approximate forms. The given simulation results show that the placement of the relay (R) plays an important role in the system performance.


Author(s):  
Sharnil Pandya ◽  
Patteti Krishna ◽  
Ravi Shankar ◽  
Ankur Singh Bist

In a defense scenario, the communicating nodes are mobile and, due to this, the fading channel links become time selective in nature. Non-orthogonal multiple access (NOMA) is a promising technique in modern wireless communication systems, and it is employed in a variety of defense ad hoc wireless communication scenarios where nodes are mobile and it is difficult to estimate the channel coefficients perfectly. NOMA contributes to increased spectral efficiency (SE), firstly by enabling fifth-generation new radio deployment in the 3.5 GHz frequency range, and secondly by employing a simultaneous wireless information and power transfer (SWIPT) time switching and power splitting-based cooperative NOMA (C-NOMA) network where simple radio frequency circuitry is used for energy harvesting. NOMA together with the selective decode-and-forward (S-DF) protocol will increase the SE and energy efficiency simultaneously. The outage probability performance is evaluated for various values of the fading severity parameter and node velocity forming the channel error. It is significant to note that digital S-DF-based SWIPT C-NOMA performs much better than an analog amplify-and-forward-based C-NOMA SWIPT system.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Thanh-Luan Nguyen ◽  
Duy-Hung Ha ◽  
Phu Tran Tin ◽  
Nguyen Van Vinh

This paper studies the joint impact of simultaneous wireless information and power transfer (SWIPT) and nonorthogonal multiple access (NOMA) to the cooperative relay (CoR) network where direct links exist. Over Nakagami-m fading environments, the near users employ decode-and-forward (DF) and energy harvesting (EH) to assist the transmission from the source to the far users. Exploiting the time-switching protocol (TSP) and power-splitting protocol (PSP) to the CoR-based NOMA system, analytical results for the outage probability are derived, and the corresponding throughput is obtained. Comparative results show that the PSP outperforms the TSP at low transmit power, while at high-transmit-power regime, the TSP provides similar performance as the PSP.


Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 67 ◽  
Author(s):  
Tan N. Nguyen ◽  
Minh Tran ◽  
Thanh-Long Nguyen ◽  
Duy-Hung Ha ◽  
Miroslav Voznak

Energy harvesting and information transferring simultaneously by radio frequency (RF) is considered as the novel solution for green-energy wireless communications. From that point of view, the system performance (SP) analysis of multisource power splitting (PS) energy harvesting (EH) relaying network (RN) over block Rayleigh-fading channels is presented and investigated. We investigate the system in both delay-tolerant transmission (DTT), and delay-limited transmission (DLT) modes and devices work in the half-duplex (HD) system. In this model system, the closed-form (CF) expressions for the outage probability (OP), system throughput (ST) in DLT mode and for ergodic capacity (EC) for DTT mode are analyzed and derived, respectively. Furthermore, CF expression for the symbol errors ratio (SER) is demonstrated. Then, the optimal PS factor is investigated. Finally, a Monte Carlo simulation is used for validating the analytical expressions concerning with all system parameters (SP).


2017 ◽  
Vol 13 (2) ◽  
pp. 155014771769384 ◽  
Author(s):  
Vikash Singh ◽  
Hideki Ochiai

In this work, we propose a clustering-based multihop relaying with the partial relay selection scheme for an energy harvesting relaying network and analyze the performance in the framework of the decode-and-forward relaying and adaptive power splitting protocol over symmetric and asymmetric fading channel models. In particular, we analyze the system performance in terms of the outage probability, effective transmission rate, and throughput. Through extensive numerical analysis, we show that the proposed scheme can substantially outperform the conventional multihop relaying without clustering as well as direct transmission, which suggests that the proposed scheme can be used to extend the network coverage without any extra energy from the network. We also demonstrate that the proposed scheme can compensate for the performance loss due to poor radio frequency to DC conversion efficiency as well as path loss by exploiting the gain associated with multihop relaying as well as the diversity gain achieved through the partial relay selection scheme. Moreover, we investigate the relationship between the total number of relay nodes in the network and the number of hops and show that there is an optimal number of hops that can maximize the throughput for a given transmission power of the source. The effect of the asymmetric channels in our clustering-based multihop relaying is also investigated and it is revealed that the existence of Rician fading will help improve the throughput at the destination side, rather than the source side, as opposed to the conventional multihop relaying scenarios without clustering.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jingmin Zhang ◽  
Xiaokui Yue ◽  
Xuan Li ◽  
Haofei Zhang ◽  
Tao Ni ◽  
...  

This article focuses on the simultaneous wireless information and power transfer (SWIPT) systems, which provide both the power supply and the communications for Internet-of-Things (IoT) devices in the sixth-generation (6G) network. Due to the extremely stringent requirements on reliability, speed, and security in the 6G network, aerial access networks (AANs) are deployed to extend the coverage of wireless communications and guarantee robustness. Moreover, sparse code multiple access (SCMA) is implemented on the SWIPT system to further promote the spectrum efficiency. To improve the speed and security of SWIPT systems in 6G AANs, we have developed an optimization algorithm of SCMA to maximize the secrecy sum rate (SSR). Specifically, a power-splitting (PS) strategy is applied by each user to coordinate its energy harvesting and information decoding. Hence, the SSR maximization problems in the SCMA system are formulated in terms of the PS and resource allocation, under the constraints on the minimum rates and minimum harvested energy of individual users. Then, a successive convex approximation method is introduced to transform the nonconvex problems to the convex ones, which are then solved by an iterative algorithm. In addition, we investigate the SSR performance of the SCMA system supported by our optimization methods, when the impacts from different perspectives are considered. Our studies and simulation results show that the SCMA system supported by our proposed optimization algorithms significantly outperforms the legacy system with uniform power allocation and fixed PS.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Phu Tran Tin ◽  
Phan Van-Duc ◽  
Tan N. Nguyen ◽  
Le Anh Vu

In this paper, we investigate the full-duplex (FD) decode-and-forward (DF) cooperative relaying system, whereas the relay node can harvest energy from radiofrequency (RF) signals of the source and then utilize the harvested energy to transfer the information to the destination. Specifically, a hybrid time-power switching-based relaying method is adopted, which leverages the benefits of time-switching relaying (TSR) and power-splitting relaying (PSR) protocols. While energy harvesting (EH) helps to reduce the limited energy at the relay, full-duplex is one of the most important techniques to enhance the spectrum efficiency by its capacity of transmitting and receiving signals simultaneously. Based on the proposed system model, the performance of the proposed relaying system in terms of the ergodic capacity (EC) is analyzed. Specifically, we derive the exact closed form for upper bound EC by applying some special function mathematics. Then, the Monte Carlo simulations are performed to validate the mathematical analysis and numerical results.


Author(s):  
Muhammad Zarol Fitri Khairol Fauz ◽  
Elsheikh Mohamed Ahmed Elsheikh

Relying has in use for decades to tackle some of the challenges of wireless communication such as extending transmitting distance, transmitting over rough terrains. Diversity achieved through relaying is also a means to combat the random behavior of fading channels. In this work, effect of time and power allocation on relay performance is studied. The channel considered is the three-node channel with half-duplex constraint on the relay. The relaying technique assumed is decode-and-forward. Mutual information is used as the criteria to measure channel performance. There is half-duplex constraint and a total transmission power constraint on the relay source node and the relay node. A model is established to analyze the mutual information as a function of time allocation and power allocation in the case of AWGN regime. The model is extended to the Rayleigh fading scenario. In both AWGN and Rayleigh fading, results showed that the importance of relaying is more apparent when more resources are allocated to the relay. It was also shown that quality of the source to destination link has direct impact on the decision to relay or not to relay. Relatively good source to destination channel makes relaying less useful. The opposite is true for the other two links, namely the source to relay channel and the relay to destination channel. When these two channels are good, relaying becomes advantageous. When applied to cellular systems, we concluded that relaying is more beneficial to battery-operated mobile nodes than to base stations.


Sign in / Sign up

Export Citation Format

Share Document