An Early Detection-Warning System to Identify Speed Breakers and Bumpy Roads using Sensors In Smartphones

Author(s):  
Vamsee Krishna Kiran M ◽  
Vimalkumar K ◽  
Vinodhini R E ◽  
Archanaa R

Speed breakers and bumpy roads are a major threat to drivers that questions their safety. The mishap happens because of no sign boards indicating the speed breaker, poor visibility at night and road works that are often carried out with no proper signs of road deviations and also the negligence of the driver. All these factors put the life of the persons in vain causing damage to the vehicle as well as life. Also, bumpy roads have become a problem for cars with less ground clearance. The focus of the paper is on designing an early warning system detecting both speed breaker humps and bad road conditions. The approach used in this paper is a real-time solution and is developed as an android service that runs in the background and relies on Google Maps application in the smartphone. This service will throw an alert giving early warning if the user is approaching the speed breaker or a bumpy road. Apart from just giving an early alert to the user, it also provides the user with an alternative and a better route. The solution proposed in this work is a form of crowdsourcing where users share and get data, therefore making the system cost effective.

2012 ◽  
Vol 446-449 ◽  
pp. 3422-3427
Author(s):  
Wang Sheng Liu ◽  
Ming Zhao

Today there is an urgent need for effective monitoring whether for old buildings or new ones. While conventional early warning system for real-time monitoring is based on safety factor, this paper proposes a new reliability-based framework to monitor the safety of RC buildings probabilistically. The framework includes modeling resistance, predicting probability distribution of load effect, calculating reliability and setting reliability index threshold. The in-situ test data enables to update the resistance model through a Bayesian process. Meanwhile, the observed monitoring data predicts the probability distribution of load effect. FORM is used to calculate the reliability because the limit state function for real-time monitoring is linear and simple. This study shows that the reliability-based early warning system is of more scientific sense in quantifying the safety and may be applied to many engineering fields.


2018 ◽  
Vol 14 (01) ◽  
pp. 66
Author(s):  
Gan Bo ◽  
Jin Shan

In order to solve the shortcomings of the landslide monitoring technology method, a set of landslides monitoring and early warning system is designed. It can achieve real-time sensor data acquisition, remote transmission and query display. In addition, aiming at the harsh environment of landslide monitoring and the performance requirements of the monitoring system, an improved minimum hop routing protocol is proposed. It can reduce network energy consumption, enhance network robustness, and improve node layout and networking flexibility. In order to realize the remote transmission of data, GPRS wireless communication is used to transmit monitoring data. Combined with remote monitoring center, real-time data display, query, preservation and landslide warning and prediction are realized. The results show that the sensor data acquisition system is accurate, the system is stable, and the node network is flexible. Therefore, the monitoring system has a good use value.


2021 ◽  
Vol 10 (1) ◽  
pp. 126-134
Author(s):  
Meli Diana ◽  
Dimas Hadi Prayoga ◽  
Dini Prastyo Wijayanti

Background: Hospital service is a process that involves all elements in the hospital including nurses and inpatient rooms or nursing wards. Different inpatient conditions will be treated in separated wards, by the same token patients with unstable conditions are admitted in intensive care units, this procedure aims to reduce the mortality incidence due to sudden cardiac arrest, therefore early detection of patients’ clinical deterioration using the early warning score system performed by the nurse in the nursing wards is required. Objective: This review study is a summary of the early warning system implementation in the nursing wards. Design: The data was obtained from international journal providers Proquest and Ebsco databases. The author accessed unair.remotexs.co website. Review Methods: Narative Review. Results: Early warning score is an effective intervention for emergency detection in patients. Conclusion: Early detection clinical emergency or known as the Early Warning Score System (EWSS) is the application of a scoring system for early detection of patient's condition before a worsening situation occurs. The implementation of this scoring system is necessary due to the high rate of deterioration of patient conditions that requiring immediate management to prevent profound deterioration and its subsequent adverse effect Keywords : Early warning system;nurse care;literatur;review


2010 ◽  
Vol 10 (2) ◽  
pp. 181-189 ◽  
Author(s):  
C. Falck ◽  
M. Ramatschi ◽  
C. Subarya ◽  
M. Bartsch ◽  
A. Merx ◽  
...  

Abstract. GPS (Global Positioning System) technology is widely used for positioning applications. Many of them have high requirements with respect to precision, reliability or fast product delivery, but usually not all at the same time as it is the case for early warning applications. The tasks for the GPS-based components within the GITEWS project (German Indonesian Tsunami Early Warning System, Rudloff et al., 2009) are to support the determination of sea levels (measured onshore and offshore) and to detect co-seismic land mass displacements with the lowest possible latency (design goal: first reliable results after 5 min). The completed system was designed to fulfil these tasks in near real-time, rather than for scientific research requirements. The obtained data products (movements of GPS antennas) are supporting the warning process in different ways. The measurements from GPS instruments on buoys allow the earliest possible detection or confirmation of tsunami waves on the ocean. Onshore GPS measurements are made collocated with tide gauges or seismological stations and give information about co-seismic land mass movements as recorded, e.g., during the great Sumatra-Andaman earthquake of 2004 (Subarya et al., 2006). This information is important to separate tsunami-caused sea height movements from apparent sea height changes at tide gauge locations (sensor station movement) and also as additional information about earthquakes' mechanisms, as this is an essential information to predict a tsunami (Sobolev et al., 2007). This article gives an end-to-end overview of the GITEWS GPS-component system, from the GPS sensors (GPS receiver with GPS antenna and auxiliary systems, either onshore or offshore) to the early warning centre displays. We describe how the GPS sensors have been installed, how they are operated and the methods used to collect, transfer and process the GPS data in near real-time. This includes the sensor system design, the communication system layout with real-time data streaming, the data processing strategy and the final products of the GPS-based early warning system components.


Author(s):  
Muhammad Riyansyah ◽  
Pratama Budi Wijayanto ◽  
Bambang Riyanto Trilaksono ◽  
Seno Adi Putra ◽  
Dina Shona Laila

Sign in / Sign up

Export Citation Format

Share Document